Spaces:
Running
on
Zero
Running
on
Zero
File size: 44,818 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 |
import math
import numbers
from typing import Any, Callable, Dict, List, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.image_processor import PipelineImageInput
from diffusers.models import AsymmetricAutoencoderKL, ImageProjection
from diffusers.models.attention_processor import Attention, AttnProcessor
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import (
StableDiffusionInpaintPipeline,
retrieve_timesteps,
)
from diffusers.utils import deprecate
class RASGAttnProcessor:
def __init__(self, mask, token_idx, scale_factor):
self.attention_scores = None # Stores the last output of the similarity matrix here. Each layer will get its own RASGAttnProcessor assigned
self.mask = mask
self.token_idx = token_idx
self.scale_factor = scale_factor
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64 if the image is 512x512
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Same as the default AttnProcessor up untill the part where similarity matrix gets saved
downscale_factor = self.mask_resoltuion // hidden_states.shape[1]
residual = hidden_states
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
# Automatically recognize the resolution and save the attention similarity values
# We need to use the values before the softmax function, hence the rewritten get_attention_scores function.
if downscale_factor == self.scale_factor**2:
self.attention_scores = get_attention_scores(attn, query, key, attention_mask)
attention_probs = self.attention_scores.softmax(dim=-1)
attention_probs = attention_probs.to(query.dtype)
else:
attention_probs = attn.get_attention_scores(query, key, attention_mask) # Original code
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class PAIntAAttnProcessor:
def __init__(self, transformer_block, mask, token_idx, do_classifier_free_guidance, scale_factors):
self.transformer_block = transformer_block # Stores the parent transformer block.
self.mask = mask
self.scale_factors = scale_factors
self.do_classifier_free_guidance = do_classifier_free_guidance
self.token_idx = token_idx
self.shape = mask.shape[2:]
self.mask_resoltuion = mask.shape[-1] * mask.shape[-2] # 64 x 64
self.default_processor = AttnProcessor()
def __call__(
self,
attn: Attention,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
temb: Optional[torch.Tensor] = None,
scale: float = 1.0,
) -> torch.Tensor:
# Automatically recognize the resolution of the current attention layer and resize the masks accordingly
downscale_factor = self.mask_resoltuion // hidden_states.shape[1]
mask = None
for factor in self.scale_factors:
if downscale_factor == factor**2:
shape = (self.shape[0] // factor, self.shape[1] // factor)
mask = F.interpolate(self.mask, shape, mode="bicubic") # B, 1, H, W
break
if mask is None:
return self.default_processor(attn, hidden_states, encoder_hidden_states, attention_mask, temb, scale)
# STARTS HERE
residual = hidden_states
# Save the input hidden_states for later use
input_hidden_states = hidden_states
# ================================================== #
# =============== SELF ATTENTION 1 ================= #
# ================================================== #
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
# self_attention_probs = attn.get_attention_scores(query, key, attention_mask) # We can't use post-softmax attention scores in this case
self_attention_scores = get_attention_scores(
attn, query, key, attention_mask
) # The custom function returns pre-softmax probabilities
self_attention_probs = self_attention_scores.softmax(
dim=-1
) # Manually compute the probabilities here, the scores will be reused in the second part of PAIntA
self_attention_probs = self_attention_probs.to(query.dtype)
hidden_states = torch.bmm(self_attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
# x = x + self.attn1(self.norm1(x))
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection: # So many residuals everywhere
hidden_states = hidden_states + residual
self_attention_output_hidden_states = hidden_states / attn.rescale_output_factor
# ================================================== #
# ============ BasicTransformerBlock =============== #
# ================================================== #
# We use a hack by running the code from the BasicTransformerBlock that is between Self and Cross attentions here
# The other option would've been modifying the BasicTransformerBlock and adding this functionality here.
# I assumed that changing the BasicTransformerBlock would have been a bigger deal and decided to use this hack isntead.
# The SelfAttention block recieves the normalized latents from the BasicTransformerBlock,
# But the residual of the output is the non-normalized version.
# Therefore we unnormalize the input hidden state here
unnormalized_input_hidden_states = (
input_hidden_states + self.transformer_block.norm1.bias
) * self.transformer_block.norm1.weight
# TODO: return if neccessary
# if self.use_ada_layer_norm_zero:
# attn_output = gate_msa.unsqueeze(1) * attn_output
# elif self.use_ada_layer_norm_single:
# attn_output = gate_msa * attn_output
transformer_hidden_states = self_attention_output_hidden_states + unnormalized_input_hidden_states
if transformer_hidden_states.ndim == 4:
transformer_hidden_states = transformer_hidden_states.squeeze(1)
# TODO: return if neccessary
# 2.5 GLIGEN Control
# if gligen_kwargs is not None:
# transformer_hidden_states = self.fuser(transformer_hidden_states, gligen_kwargs["objs"])
# NOTE: we experimented with using GLIGEN and HDPainter together, the results were not that great
# 3. Cross-Attention
if self.transformer_block.use_ada_layer_norm:
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, timestep)
raise NotImplementedError()
elif self.transformer_block.use_ada_layer_norm_zero or self.transformer_block.use_layer_norm:
transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states)
elif self.transformer_block.use_ada_layer_norm_single:
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
transformer_norm_hidden_states = transformer_hidden_states
elif self.transformer_block.use_ada_layer_norm_continuous:
# transformer_norm_hidden_states = self.transformer_block.norm2(transformer_hidden_states, added_cond_kwargs["pooled_text_emb"])
raise NotImplementedError()
else:
raise ValueError("Incorrect norm")
if self.transformer_block.pos_embed is not None and self.transformer_block.use_ada_layer_norm_single is False:
transformer_norm_hidden_states = self.transformer_block.pos_embed(transformer_norm_hidden_states)
# ================================================== #
# ================= CROSS ATTENTION ================ #
# ================================================== #
# We do an initial pass of the CrossAttention up to obtaining the similarity matrix here.
# The similarity matrix is used to obtain scaling coefficients for the attention matrix of the self attention
# We reuse the previously computed self-attention matrix, and only repeat the steps after the softmax
cross_attention_input_hidden_states = (
transformer_norm_hidden_states # Renaming the variable for the sake of readability
)
# TODO: check if classifier_free_guidance is being used before splitting here
if self.do_classifier_free_guidance:
# Our scaling coefficients depend only on the conditional part, so we split the inputs
(
_cross_attention_input_hidden_states_unconditional,
cross_attention_input_hidden_states_conditional,
) = cross_attention_input_hidden_states.chunk(2)
# Same split for the encoder_hidden_states i.e. the tokens
# Since the SelfAttention processors don't get the encoder states as input, we inject them into the processor in the begining.
_encoder_hidden_states_unconditional, encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(
2
)
else:
cross_attention_input_hidden_states_conditional = cross_attention_input_hidden_states
encoder_hidden_states_conditional = self.encoder_hidden_states.chunk(2)
# Rename the variables for the sake of readability
# The part below is the beginning of the __call__ function of the following CrossAttention layer
cross_attention_hidden_states = cross_attention_input_hidden_states_conditional
cross_attention_encoder_hidden_states = encoder_hidden_states_conditional
attn2 = self.transformer_block.attn2
if attn2.spatial_norm is not None:
cross_attention_hidden_states = attn2.spatial_norm(cross_attention_hidden_states, temb)
input_ndim = cross_attention_hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = cross_attention_hidden_states.shape
cross_attention_hidden_states = cross_attention_hidden_states.view(
batch_size, channel, height * width
).transpose(1, 2)
(
batch_size,
sequence_length,
_,
) = cross_attention_hidden_states.shape # It is definitely a cross attention, so no need for an if block
# TODO: change the attention_mask here
attention_mask = attn2.prepare_attention_mask(
None, sequence_length, batch_size
) # I assume the attention mask is the same...
if attn2.group_norm is not None:
cross_attention_hidden_states = attn2.group_norm(cross_attention_hidden_states.transpose(1, 2)).transpose(
1, 2
)
query2 = attn2.to_q(cross_attention_hidden_states)
if attn2.norm_cross:
cross_attention_encoder_hidden_states = attn2.norm_encoder_hidden_states(
cross_attention_encoder_hidden_states
)
key2 = attn2.to_k(cross_attention_encoder_hidden_states)
query2 = attn2.head_to_batch_dim(query2)
key2 = attn2.head_to_batch_dim(key2)
cross_attention_probs = attn2.get_attention_scores(query2, key2, attention_mask)
# CrossAttention ends here, the remaining part is not used
# ================================================== #
# ================ SELF ATTENTION 2 ================ #
# ================================================== #
# DEJA VU!
mask = (mask > 0.5).to(self_attention_output_hidden_states.dtype)
m = mask.to(self_attention_output_hidden_states.device)
# m = rearrange(m, 'b c h w -> b (h w) c').contiguous()
m = m.permute(0, 2, 3, 1).reshape((m.shape[0], -1, m.shape[1])).contiguous() # B HW 1
m = torch.matmul(m, m.permute(0, 2, 1)) + (1 - m)
# # Compute scaling coefficients for the similarity matrix
# # Select the cross attention values for the correct tokens only!
# cross_attention_probs = cross_attention_probs.mean(dim = 0)
# cross_attention_probs = cross_attention_probs[:, self.token_idx].sum(dim=1)
# cross_attention_probs = cross_attention_probs.reshape(shape)
# gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(self_attention_output_hidden_states.device)
# cross_attention_probs = gaussian_smoothing(cross_attention_probs.unsqueeze(0))[0] # optional smoothing
# cross_attention_probs = cross_attention_probs.reshape(-1)
# cross_attention_probs = ((cross_attention_probs - torch.median(cross_attention_probs.ravel())) / torch.max(cross_attention_probs.ravel())).clip(0, 1)
# c = (1 - m) * cross_attention_probs.reshape(1, 1, -1) + m # PAIntA scaling coefficients
# Compute scaling coefficients for the similarity matrix
# Select the cross attention values for the correct tokens only!
batch_size, dims, channels = cross_attention_probs.shape
batch_size = batch_size // attn.heads
cross_attention_probs = cross_attention_probs.reshape((batch_size, attn.heads, dims, channels)) # B, D, HW, T
cross_attention_probs = cross_attention_probs.mean(dim=1) # B, HW, T
cross_attention_probs = cross_attention_probs[..., self.token_idx].sum(dim=-1) # B, HW
cross_attention_probs = cross_attention_probs.reshape((batch_size,) + shape) # , B, H, W
gaussian_smoothing = GaussianSmoothing(channels=1, kernel_size=3, sigma=0.5, dim=2).to(
self_attention_output_hidden_states.device
)
cross_attention_probs = gaussian_smoothing(cross_attention_probs[:, None])[:, 0] # optional smoothing B, H, W
# Median normalization
cross_attention_probs = cross_attention_probs.reshape(batch_size, -1) # B, HW
cross_attention_probs = (
cross_attention_probs - cross_attention_probs.median(dim=-1, keepdim=True).values
) / cross_attention_probs.max(dim=-1, keepdim=True).values
cross_attention_probs = cross_attention_probs.clip(0, 1)
c = (1 - m) * cross_attention_probs.reshape(batch_size, 1, -1) + m
c = c.repeat_interleave(attn.heads, 0) # BD, HW
if self.do_classifier_free_guidance:
c = torch.cat([c, c]) # 2BD, HW
# Rescaling the original self-attention matrix
self_attention_scores_rescaled = self_attention_scores * c
self_attention_probs_rescaled = self_attention_scores_rescaled.softmax(dim=-1)
# Continuing the self attention normally using the new matrix
hidden_states = torch.bmm(self_attention_probs_rescaled, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + input_hidden_states
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states
class StableDiffusionHDPainterPipeline(StableDiffusionInpaintPipeline):
def get_tokenized_prompt(self, prompt):
out = self.tokenizer(prompt)
return [self.tokenizer.decode(x) for x in out["input_ids"]]
def init_attn_processors(
self,
mask,
token_idx,
use_painta=True,
use_rasg=True,
painta_scale_factors=[2, 4], # 64x64 -> [16x16, 32x32]
rasg_scale_factor=4, # 64x64 -> 16x16
self_attention_layer_name="attn1",
cross_attention_layer_name="attn2",
list_of_painta_layer_names=None,
list_of_rasg_layer_names=None,
):
default_processor = AttnProcessor()
width, height = mask.shape[-2:]
width, height = width // self.vae_scale_factor, height // self.vae_scale_factor
painta_scale_factors = [x * self.vae_scale_factor for x in painta_scale_factors]
rasg_scale_factor = self.vae_scale_factor * rasg_scale_factor
attn_processors = {}
for x in self.unet.attn_processors:
if (list_of_painta_layer_names is None and self_attention_layer_name in x) or (
list_of_painta_layer_names is not None and x in list_of_painta_layer_names
):
if use_painta:
transformer_block = self.unet.get_submodule(x.replace(".attn1.processor", ""))
attn_processors[x] = PAIntAAttnProcessor(
transformer_block, mask, token_idx, self.do_classifier_free_guidance, painta_scale_factors
)
else:
attn_processors[x] = default_processor
elif (list_of_rasg_layer_names is None and cross_attention_layer_name in x) or (
list_of_rasg_layer_names is not None and x in list_of_rasg_layer_names
):
if use_rasg:
attn_processors[x] = RASGAttnProcessor(mask, token_idx, rasg_scale_factor)
else:
attn_processors[x] = default_processor
self.unet.set_attn_processor(attn_processors)
# import json
# with open('/home/hayk.manukyan/repos/diffusers/debug.txt', 'a') as f:
# json.dump({x:str(y) for x,y in self.unet.attn_processors.items()}, f, indent=4)
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
image: PipelineImageInput = None,
mask_image: PipelineImageInput = None,
masked_image_latents: torch.Tensor = None,
height: Optional[int] = None,
width: Optional[int] = None,
padding_mask_crop: Optional[int] = None,
strength: float = 1.0,
num_inference_steps: int = 50,
timesteps: List[int] = None,
guidance_scale: float = 7.5,
positive_prompt: Optional[str] = "",
negative_prompt: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: float = 0.01,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
clip_skip: int = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
use_painta=True,
use_rasg=True,
self_attention_layer_name=".attn1",
cross_attention_layer_name=".attn2",
painta_scale_factors=[2, 4], # 16 x 16 and 32 x 32
rasg_scale_factor=4, # 16x16 by default
list_of_painta_layer_names=None,
list_of_rasg_layer_names=None,
**kwargs,
):
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 0. Default height and width to unet
height = height or self.unet.config.sample_size * self.vae_scale_factor
width = width or self.unet.config.sample_size * self.vae_scale_factor
#
prompt_no_positives = prompt
if isinstance(prompt, list):
prompt = [x + positive_prompt for x in prompt]
else:
prompt = prompt + positive_prompt
# 1. Check inputs
self.check_inputs(
prompt,
image,
mask_image,
height,
width,
strength,
callback_steps,
negative_prompt,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
padding_mask_crop,
)
self._guidance_scale = guidance_scale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._interrupt = False
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
# assert batch_size == 1, "Does not work with batch size > 1 currently"
device = self._execution_device
# 3. Encode input prompt
text_encoder_lora_scale = (
cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
)
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt,
device,
num_images_per_prompt,
self.do_classifier_free_guidance,
negative_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
if ip_adapter_image is not None:
output_hidden_state = False if isinstance(self.unet.encoder_hid_proj, ImageProjection) else True
image_embeds, negative_image_embeds = self.encode_image(
ip_adapter_image, device, num_images_per_prompt, output_hidden_state
)
if self.do_classifier_free_guidance:
image_embeds = torch.cat([negative_image_embeds, image_embeds])
# 4. set timesteps
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps=num_inference_steps, strength=strength, device=device
)
# check that number of inference steps is not < 1 - as this doesn't make sense
if num_inference_steps < 1:
raise ValueError(
f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline"
f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline."
)
# at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
# create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
is_strength_max = strength == 1.0
# 5. Preprocess mask and image
if padding_mask_crop is not None:
crops_coords = self.mask_processor.get_crop_region(mask_image, width, height, pad=padding_mask_crop)
resize_mode = "fill"
else:
crops_coords = None
resize_mode = "default"
original_image = image
init_image = self.image_processor.preprocess(
image, height=height, width=width, crops_coords=crops_coords, resize_mode=resize_mode
)
init_image = init_image.to(dtype=torch.float32)
# 6. Prepare latent variables
num_channels_latents = self.vae.config.latent_channels
num_channels_unet = self.unet.config.in_channels
return_image_latents = num_channels_unet == 4
latents_outputs = self.prepare_latents(
batch_size * num_images_per_prompt,
num_channels_latents,
height,
width,
prompt_embeds.dtype,
device,
generator,
latents,
image=init_image,
timestep=latent_timestep,
is_strength_max=is_strength_max,
return_noise=True,
return_image_latents=return_image_latents,
)
if return_image_latents:
latents, noise, image_latents = latents_outputs
else:
latents, noise = latents_outputs
# 7. Prepare mask latent variables
mask_condition = self.mask_processor.preprocess(
mask_image, height=height, width=width, resize_mode=resize_mode, crops_coords=crops_coords
)
if masked_image_latents is None:
masked_image = init_image * (mask_condition < 0.5)
else:
masked_image = masked_image_latents
mask, masked_image_latents = self.prepare_mask_latents(
mask_condition,
masked_image,
batch_size * num_images_per_prompt,
height,
width,
prompt_embeds.dtype,
device,
generator,
self.do_classifier_free_guidance,
)
# 7.5 Setting up HD-Painter
# Get the indices of the tokens to be modified by both RASG and PAIntA
token_idx = list(range(1, self.get_tokenized_prompt(prompt_no_positives).index("<|endoftext|>"))) + [
self.get_tokenized_prompt(prompt).index("<|endoftext|>")
]
# Setting up the attention processors
self.init_attn_processors(
mask_condition,
token_idx,
use_painta,
use_rasg,
painta_scale_factors=painta_scale_factors,
rasg_scale_factor=rasg_scale_factor,
self_attention_layer_name=self_attention_layer_name,
cross_attention_layer_name=cross_attention_layer_name,
list_of_painta_layer_names=list_of_painta_layer_names,
list_of_rasg_layer_names=list_of_rasg_layer_names,
)
# 8. Check that sizes of mask, masked image and latents match
if num_channels_unet == 9:
# default case for runwayml/stable-diffusion-inpainting
num_channels_mask = mask.shape[1]
num_channels_masked_image = masked_image_latents.shape[1]
if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels:
raise ValueError(
f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects"
f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}"
f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of"
" `pipeline.unet` or your `mask_image` or `image` input."
)
elif num_channels_unet != 4:
raise ValueError(
f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}."
)
# 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
if use_rasg:
extra_step_kwargs["generator"] = None
# 9.1 Add image embeds for IP-Adapter
added_cond_kwargs = {"image_embeds": image_embeds} if ip_adapter_image is not None else None
# 9.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
# 10. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
painta_active = True
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
if t < 500 and painta_active:
self.init_attn_processors(
mask_condition,
token_idx,
False,
use_rasg,
painta_scale_factors=painta_scale_factors,
rasg_scale_factor=rasg_scale_factor,
self_attention_layer_name=self_attention_layer_name,
cross_attention_layer_name=cross_attention_layer_name,
list_of_painta_layer_names=list_of_painta_layer_names,
list_of_rasg_layer_names=list_of_rasg_layer_names,
)
painta_active = False
with torch.enable_grad():
self.unet.zero_grad()
latents = latents.detach()
latents.requires_grad = True
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
# concat latents, mask, masked_image_latents in the channel dimension
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
if num_channels_unet == 9:
latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1)
self.scheduler.latents = latents
self.encoder_hidden_states = prompt_embeds
for attn_processor in self.unet.attn_processors.values():
attn_processor.encoder_hidden_states = prompt_embeds
# predict the noise residual
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
if use_rasg:
# Perform RASG
_, _, height, width = mask_condition.shape # 512 x 512
scale_factor = self.vae_scale_factor * rasg_scale_factor # 8 * 4 = 32
# TODO: Fix for > 1 batch_size
rasg_mask = F.interpolate(
mask_condition, (height // scale_factor, width // scale_factor), mode="bicubic"
)[0, 0] # mode is nearest by default, B, H, W
# Aggregate the saved attention maps
attn_map = []
for processor in self.unet.attn_processors.values():
if hasattr(processor, "attention_scores") and processor.attention_scores is not None:
if self.do_classifier_free_guidance:
attn_map.append(processor.attention_scores.chunk(2)[1]) # (B/2) x H, 256, 77
else:
attn_map.append(processor.attention_scores) # B x H, 256, 77 ?
attn_map = (
torch.cat(attn_map)
.mean(0)
.permute(1, 0)
.reshape((-1, height // scale_factor, width // scale_factor))
) # 77, 16, 16
# Compute the attention score
attn_score = -sum(
[
F.binary_cross_entropy_with_logits(x - 1.0, rasg_mask.to(device))
for x in attn_map[token_idx]
]
)
# Backward the score and compute the gradients
attn_score.backward()
# Normalzie the gradients and compute the noise component
variance_noise = latents.grad.detach()
# print("VARIANCE SHAPE", variance_noise.shape)
variance_noise -= torch.mean(variance_noise, [1, 2, 3], keepdim=True)
variance_noise /= torch.std(variance_noise, [1, 2, 3], keepdim=True)
else:
variance_noise = None
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs, return_dict=False, variance_noise=variance_noise
)[0]
if num_channels_unet == 4:
init_latents_proper = image_latents
if self.do_classifier_free_guidance:
init_mask, _ = mask.chunk(2)
else:
init_mask = mask
if i < len(timesteps) - 1:
noise_timestep = timesteps[i + 1]
init_latents_proper = self.scheduler.add_noise(
init_latents_proper, noise, torch.tensor([noise_timestep])
)
latents = (1 - init_mask) * init_latents_proper + init_mask * latents
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
mask = callback_outputs.pop("mask", mask)
masked_image_latents = callback_outputs.pop("masked_image_latents", masked_image_latents)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if not output_type == "latent":
condition_kwargs = {}
if isinstance(self.vae, AsymmetricAutoencoderKL):
init_image = init_image.to(device=device, dtype=masked_image_latents.dtype)
init_image_condition = init_image.clone()
init_image = self._encode_vae_image(init_image, generator=generator)
mask_condition = mask_condition.to(device=device, dtype=masked_image_latents.dtype)
condition_kwargs = {"image": init_image_condition, "mask": mask_condition}
image = self.vae.decode(
latents / self.vae.config.scaling_factor, return_dict=False, generator=generator, **condition_kwargs
)[0]
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
else:
image = latents
has_nsfw_concept = None
if has_nsfw_concept is None:
do_denormalize = [True] * image.shape[0]
else:
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
if padding_mask_crop is not None:
image = [self.image_processor.apply_overlay(mask_image, original_image, i, crops_coords) for i in image]
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image, has_nsfw_concept)
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
# ============= Utility Functions ============== #
class GaussianSmoothing(nn.Module):
"""
Apply gaussian smoothing on a
1d, 2d or 3d tensor. Filtering is performed seperately for each channel
in the input using a depthwise convolution.
Arguments:
channels (int, sequence): Number of channels of the input tensors. Output will
have this number of channels as well.
kernel_size (int, sequence): Size of the gaussian kernel.
sigma (float, sequence): Standard deviation of the gaussian kernel.
dim (int, optional): The number of dimensions of the data.
Default value is 2 (spatial).
"""
def __init__(self, channels, kernel_size, sigma, dim=2):
super(GaussianSmoothing, self).__init__()
if isinstance(kernel_size, numbers.Number):
kernel_size = [kernel_size] * dim
if isinstance(sigma, numbers.Number):
sigma = [sigma] * dim
# The gaussian kernel is the product of the
# gaussian function of each dimension.
kernel = 1
meshgrids = torch.meshgrid([torch.arange(size, dtype=torch.float32) for size in kernel_size])
for size, std, mgrid in zip(kernel_size, sigma, meshgrids):
mean = (size - 1) / 2
kernel *= 1 / (std * math.sqrt(2 * math.pi)) * torch.exp(-(((mgrid - mean) / (2 * std)) ** 2))
# Make sure sum of values in gaussian kernel equals 1.
kernel = kernel / torch.sum(kernel)
# Reshape to depthwise convolutional weight
kernel = kernel.view(1, 1, *kernel.size())
kernel = kernel.repeat(channels, *[1] * (kernel.dim() - 1))
self.register_buffer("weight", kernel)
self.groups = channels
if dim == 1:
self.conv = F.conv1d
elif dim == 2:
self.conv = F.conv2d
elif dim == 3:
self.conv = F.conv3d
else:
raise RuntimeError("Only 1, 2 and 3 dimensions are supported. Received {}.".format(dim))
def forward(self, input):
"""
Apply gaussian filter to input.
Arguments:
input (torch.Tensor): Input to apply gaussian filter on.
Returns:
filtered (torch.Tensor): Filtered output.
"""
return self.conv(input, weight=self.weight.to(input.dtype), groups=self.groups, padding="same")
def get_attention_scores(
self, query: torch.Tensor, key: torch.Tensor, attention_mask: torch.Tensor = None
) -> torch.Tensor:
r"""
Compute the attention scores.
Args:
query (`torch.Tensor`): The query tensor.
key (`torch.Tensor`): The key tensor.
attention_mask (`torch.Tensor`, *optional*): The attention mask to use. If `None`, no mask is applied.
Returns:
`torch.Tensor`: The attention probabilities/scores.
"""
if self.upcast_attention:
query = query.float()
key = key.float()
if attention_mask is None:
baddbmm_input = torch.empty(
query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device
)
beta = 0
else:
baddbmm_input = attention_mask
beta = 1
attention_scores = torch.baddbmm(
baddbmm_input,
query,
key.transpose(-1, -2),
beta=beta,
alpha=self.scale,
)
del baddbmm_input
if self.upcast_softmax:
attention_scores = attention_scores.float()
return attention_scores
|