Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,130 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
# Consistency Training
`train_cm_ct_unconditional.py` trains a consistency model (CM) from scratch following the consistency training (CT) algorithm introduced in [Consistency Models](https://arxiv.org/abs/2303.01469) and refined in [Improved Techniques for Training Consistency Models](https://arxiv.org/abs/2310.14189). Both unconditional and class-conditional training are supported.
A usage example is as follows:
```bash
accelerate launch examples/research_projects/consistency_training/train_cm_ct_unconditional.py \
--dataset_name="cifar10" \
--dataset_image_column_name="img" \
--output_dir="/path/to/output/dir" \
--mixed_precision=fp16 \
--resolution=32 \
--max_train_steps=1000 --max_train_samples=10000 \
--dataloader_num_workers=8 \
--noise_precond_type="cm" --input_precond_type="cm" \
--train_batch_size=4 \
--learning_rate=1e-04 --lr_scheduler="constant" --lr_warmup_steps=0 \
--use_8bit_adam \
--use_ema \
--validation_steps=100 --eval_batch_size=4 \
--checkpointing_steps=100 --checkpoints_total_limit=10 \
--class_conditional --num_classes=10 \
``` |