Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,666 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# GLIGEN: Open-Set Grounded Text-to-Image Generation
These scripts contain the code to prepare the grounding data and train the GLIGEN model on COCO dataset.
### Install the requirements
```bash
conda create -n diffusers python==3.10
conda activate diffusers
pip install -r requirements.txt
```
And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with:
```bash
accelerate config
```
Or for a default accelerate configuration without answering questions about your environment
```bash
accelerate config default
```
Or if your environment doesn't support an interactive shell e.g. a notebook
```python
from accelerate.utils import write_basic_config
write_basic_config()
```
### Prepare the training data
If you want to make your own grounding data, you need to install the requirements.
I used [RAM](https://github.com/xinyu1205/recognize-anything) to tag
images, [Grounding DINO](https://github.com/IDEA-Research/GroundingDINO/issues?q=refer) to detect objects,
and [BLIP2](https://huggingface.co/docs/transformers/en/model_doc/blip-2) to caption instances.
Only RAM needs to be installed manually:
```bash
pip install git+https://github.com/xinyu1205/recognize-anything.git --no-deps
```
Download the pre-trained model:
```bash
huggingface-cli download --resume-download xinyu1205/recognize_anything_model ram_swin_large_14m.pth
huggingface-cli download --resume-download IDEA-Research/grounding-dino-base
huggingface-cli download --resume-download Salesforce/blip2-flan-t5-xxl
huggingface-cli download --resume-download clip-vit-large-patch14
huggingface-cli download --resume-download masterful/gligen-1-4-generation-text-box
```
Make the training data on 8 GPUs:
```bash
torchrun --master_port 17673 --nproc_per_node=8 make_datasets.py \
--data_root /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \
--save_root /root/gligen_data \
--ram_checkpoint /root/.cache/huggingface/hub/models--xinyu1205--recognize_anything_model/snapshots/ebc52dc741e86466202a5ab8ab22eae6e7d48bf1/ram_swin_large_14m.pth
```
You can download the COCO training data from
```bash
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO coco_train2017.pth
```
It's in the format of
```json
[
...
{
'file_path': Path,
'annos': [
{
'caption': Instance
Caption,
'bbox': bbox
in
xyxy,
'text_embeddings_before_projection': CLIP
text
embedding
before
linear
projection
}
]
}
...
]
```
### Training commands
The training script is heavily based
on https://github.com/huggingface/diffusers/blob/main/examples/controlnet/train_controlnet.py
```bash
accelerate launch train_gligen_text.py \
--data_path /root/data/zhizhonghuang/coco_train2017.pth \
--image_path /mnt/workspace/workgroup/zhizhonghuang/dataset/COCO/train2017 \
--train_batch_size 8 \
--max_train_steps 100000 \
--checkpointing_steps 1000 \
--checkpoints_total_limit 10 \
--learning_rate 5e-5 \
--dataloader_num_workers 16 \
--mixed_precision fp16 \
--report_to wandb \
--tracker_project_name gligen \
--output_dir /root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO
```
I trained the model on 8 A100 GPUs for about 11 hours (at least 24GB GPU memory). The generated images will follow the
layout possibly at 50k iterations.
Note that although the pre-trained GLIGEN model has been loaded, the parameters of `fuser` and `position_net` have been reset (see line 420 in `train_gligen_text.py`)
The trained model can be downloaded from
```bash
huggingface-cli download --resume-download Hzzone/GLIGEN_COCO config.json diffusion_pytorch_model.safetensors
```
You can run `demo.ipynb` to visualize the generated images.
Example prompts:
```python
prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky'
boxes = [[0.041015625, 0.548828125, 0.453125, 0.859375],
[0.525390625, 0.552734375, 0.93359375, 0.865234375],
[0.12890625, 0.015625, 0.412109375, 0.279296875],
[0.578125, 0.08203125, 0.857421875, 0.27734375]]
gligen_phrases = ['a green car', 'a blue truck', 'a red air balloon', 'a bird']
```
Example images:
![alt text](generated-images-100000-00.png)
### Citation
```
@article{li2023gligen,
title={GLIGEN: Open-Set Grounded Text-to-Image Generation},
author={Li, Yuheng and Liu, Haotian and Wu, Qingyang and Mu, Fangzhou and Yang, Jianwei and Gao, Jianfeng and Li, Chunyuan and Lee, Yong Jae},
journal={CVPR},
year={2023}
}
``` |