File size: 7,687 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "The autoreload extension is already loaded. To reload it, use:\n",
      "  %reload_ext autoreload\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda/envs/densecaption/lib/python3.11/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    }
   ],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "import torch\n",
    "from diffusers import StableDiffusionGLIGENTextImagePipeline, StableDiffusionGLIGENPipeline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import diffusers\n",
    "from diffusers import (\n",
    "    AutoencoderKL,\n",
    "    DDPMScheduler,\n",
    "    UNet2DConditionModel,\n",
    "    UniPCMultistepScheduler,\n",
    "    EulerDiscreteScheduler,\n",
    ")\n",
    "from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer\n",
    "# pretrained_model_name_or_path = 'masterful/gligen-1-4-generation-text-box'\n",
    "\n",
    "pretrained_model_name_or_path = '/root/data/zhizhonghuang/checkpoints/models--masterful--gligen-1-4-generation-text-box/snapshots/d2820dc1e9ba6ca082051ce79cfd3eb468ae2c83'\n",
    "\n",
    "tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder=\"tokenizer\")\n",
    "noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder=\"scheduler\")\n",
    "text_encoder = CLIPTextModel.from_pretrained(\n",
    "    pretrained_model_name_or_path, subfolder=\"text_encoder\"\n",
    ")\n",
    "vae = AutoencoderKL.from_pretrained(\n",
    "    pretrained_model_name_or_path, subfolder=\"vae\"\n",
    ")\n",
    "# unet = UNet2DConditionModel.from_pretrained(\n",
    "#     pretrained_model_name_or_path, subfolder=\"unet\"\n",
    "# )\n",
    "\n",
    "noise_scheduler = EulerDiscreteScheduler.from_config(noise_scheduler.config)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [],
   "source": [
    "unet = UNet2DConditionModel.from_pretrained(\n",
    "    '/root/data/zhizhonghuang/ckpt/GLIGEN_Text_Retrain_COCO'\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "You have disabled the safety checker for <class 'diffusers.pipelines.stable_diffusion_gligen.pipeline_stable_diffusion_gligen.StableDiffusionGLIGENPipeline'> by passing `safety_checker=None`. Ensure that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered results in services or applications open to the public. Both the diffusers team and Hugging Face strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling it only for use-cases that involve analyzing network behavior or auditing its results. For more information, please have a look at https://github.com/huggingface/diffusers/pull/254 .\n"
     ]
    }
   ],
   "source": [
    "pipe = StableDiffusionGLIGENPipeline(\n",
    "    vae,\n",
    "    text_encoder,\n",
    "    tokenizer,\n",
    "    unet,\n",
    "    noise_scheduler,\n",
    "    safety_checker=None,\n",
    "    feature_extractor=None,\n",
    ")\n",
    "pipe = pipe.to(\"cuda\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "# prompt = 'A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky'\n",
    "# gen_boxes = [('a green car', [21, 281, 211, 159]), ('a blue truck', [269, 283, 209, 160]), ('a red air balloon', [66, 8, 145, 135]), ('a bird', [296, 42, 143, 100])]\n",
    "\n",
    "# prompt = 'A realistic top-down view of a wooden table with two apples on it'\n",
    "# gen_boxes = [('a wooden table', [20, 148, 472, 216]), ('an apple', [150, 226, 100, 100]), ('an apple', [280, 226, 100, 100])]\n",
    "\n",
    "# prompt = 'A realistic scene of three skiers standing in a line on the snow near a palm tree'\n",
    "# gen_boxes = [('a skier', [5, 152, 139, 168]), ('a skier', [278, 192, 121, 158]), ('a skier', [148, 173, 124, 155]), ('a palm tree', [404, 105, 103, 251])]\n",
    "\n",
    "prompt = 'An oil painting of a pink dolphin jumping on the left of a steam boat on the sea'\n",
    "gen_boxes = [('a steam boat', [232, 225, 257, 149]), ('a jumping pink dolphin', [21, 249, 189, 123])]\n",
    "\n",
    "import numpy as np\n",
    "\n",
    "boxes = np.array([x[1] for x in gen_boxes])\n",
    "boxes = boxes / 512\n",
    "boxes[:, 2] = boxes[:, 0] + boxes[:, 2]\n",
    "boxes[:, 3] = boxes[:, 1] + boxes[:, 3]\n",
    "boxes = boxes.tolist()\n",
    "gligen_phrases = [x[0] for x in gen_boxes]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/root/miniconda/envs/densecaption/lib/python3.11/site-packages/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py:683: FutureWarning: Accessing config attribute `in_channels` directly via 'UNet2DConditionModel' object attribute is deprecated. Please access 'in_channels' over 'UNet2DConditionModel's config object instead, e.g. 'unet.config.in_channels'.\n",
      "  num_channels_latents = self.unet.in_channels\n",
      "/root/miniconda/envs/densecaption/lib/python3.11/site-packages/diffusers/pipelines/stable_diffusion_gligen/pipeline_stable_diffusion_gligen.py:716: FutureWarning: Accessing config attribute `cross_attention_dim` directly via 'UNet2DConditionModel' object attribute is deprecated. Please access 'cross_attention_dim' over 'UNet2DConditionModel's config object instead, e.g. 'unet.config.cross_attention_dim'.\n",
      "  max_objs, self.unet.cross_attention_dim, device=device, dtype=self.text_encoder.dtype\n",
      "100%|██████████| 50/50 [01:21<00:00,  1.64s/it]\n"
     ]
    }
   ],
   "source": [
    "images = pipe(\n",
    "    prompt=prompt,\n",
    "    gligen_phrases=gligen_phrases,\n",
    "    gligen_boxes=boxes,\n",
    "    gligen_scheduled_sampling_beta=1.0,\n",
    "    output_type=\"pil\",\n",
    "    num_inference_steps=50,\n",
    "    negative_prompt=\"artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate\",\n",
    "    num_images_per_prompt=16,\n",
    ").images"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "diffusers.utils.make_image_grid(images, 4, len(images)//4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "densecaption",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}