Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,249 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
#!/usr/bin/env python3
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from t5x import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, T5FilmDecoder
MODEL = "base_with_context"
def load_notes_encoder(weights, model):
model.token_embedder.weight = nn.Parameter(torch.Tensor(weights["token_embedder"]["embedding"]))
model.position_encoding.weight = nn.Parameter(torch.Tensor(weights["Embed_0"]["embedding"]), requires_grad=False)
for lyr_num, lyr in enumerate(model.encoders):
ly_weight = weights[f"layers_{lyr_num}"]
lyr.layer[0].layer_norm.weight = nn.Parameter(torch.Tensor(ly_weight["pre_attention_layer_norm"]["scale"]))
attention_weights = ly_weight["attention"]
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.Tensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.Tensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.Tensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.Tensor(attention_weights["out"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.Tensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wo"]["kernel"].T))
model.layer_norm.weight = nn.Parameter(torch.Tensor(weights["encoder_norm"]["scale"]))
return model
def load_continuous_encoder(weights, model):
model.input_proj.weight = nn.Parameter(torch.Tensor(weights["input_proj"]["kernel"].T))
model.position_encoding.weight = nn.Parameter(torch.Tensor(weights["Embed_0"]["embedding"]), requires_grad=False)
for lyr_num, lyr in enumerate(model.encoders):
ly_weight = weights[f"layers_{lyr_num}"]
attention_weights = ly_weight["attention"]
lyr.layer[0].SelfAttention.q.weight = nn.Parameter(torch.Tensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].SelfAttention.k.weight = nn.Parameter(torch.Tensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].SelfAttention.v.weight = nn.Parameter(torch.Tensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].SelfAttention.o.weight = nn.Parameter(torch.Tensor(attention_weights["out"]["kernel"].T))
lyr.layer[0].layer_norm.weight = nn.Parameter(torch.Tensor(ly_weight["pre_attention_layer_norm"]["scale"]))
lyr.layer[1].DenseReluDense.wi_0.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[1].DenseReluDense.wi_1.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[1].DenseReluDense.wo.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wo"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(torch.Tensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
model.layer_norm.weight = nn.Parameter(torch.Tensor(weights["encoder_norm"]["scale"]))
return model
def load_decoder(weights, model):
model.conditioning_emb[0].weight = nn.Parameter(torch.Tensor(weights["time_emb_dense0"]["kernel"].T))
model.conditioning_emb[2].weight = nn.Parameter(torch.Tensor(weights["time_emb_dense1"]["kernel"].T))
model.position_encoding.weight = nn.Parameter(torch.Tensor(weights["Embed_0"]["embedding"]), requires_grad=False)
model.continuous_inputs_projection.weight = nn.Parameter(
torch.Tensor(weights["continuous_inputs_projection"]["kernel"].T)
)
for lyr_num, lyr in enumerate(model.decoders):
ly_weight = weights[f"layers_{lyr_num}"]
lyr.layer[0].layer_norm.weight = nn.Parameter(
torch.Tensor(ly_weight["pre_self_attention_layer_norm"]["scale"])
)
lyr.layer[0].FiLMLayer.scale_bias.weight = nn.Parameter(
torch.Tensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T)
)
attention_weights = ly_weight["self_attention"]
lyr.layer[0].attention.to_q.weight = nn.Parameter(torch.Tensor(attention_weights["query"]["kernel"].T))
lyr.layer[0].attention.to_k.weight = nn.Parameter(torch.Tensor(attention_weights["key"]["kernel"].T))
lyr.layer[0].attention.to_v.weight = nn.Parameter(torch.Tensor(attention_weights["value"]["kernel"].T))
lyr.layer[0].attention.to_out[0].weight = nn.Parameter(torch.Tensor(attention_weights["out"]["kernel"].T))
attention_weights = ly_weight["MultiHeadDotProductAttention_0"]
lyr.layer[1].attention.to_q.weight = nn.Parameter(torch.Tensor(attention_weights["query"]["kernel"].T))
lyr.layer[1].attention.to_k.weight = nn.Parameter(torch.Tensor(attention_weights["key"]["kernel"].T))
lyr.layer[1].attention.to_v.weight = nn.Parameter(torch.Tensor(attention_weights["value"]["kernel"].T))
lyr.layer[1].attention.to_out[0].weight = nn.Parameter(torch.Tensor(attention_weights["out"]["kernel"].T))
lyr.layer[1].layer_norm.weight = nn.Parameter(
torch.Tensor(ly_weight["pre_cross_attention_layer_norm"]["scale"])
)
lyr.layer[2].layer_norm.weight = nn.Parameter(torch.Tensor(ly_weight["pre_mlp_layer_norm"]["scale"]))
lyr.layer[2].film.scale_bias.weight = nn.Parameter(
torch.Tensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T)
)
lyr.layer[2].DenseReluDense.wi_0.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_0"]["kernel"].T))
lyr.layer[2].DenseReluDense.wi_1.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wi_1"]["kernel"].T))
lyr.layer[2].DenseReluDense.wo.weight = nn.Parameter(torch.Tensor(ly_weight["mlp"]["wo"]["kernel"].T))
model.decoder_norm.weight = nn.Parameter(torch.Tensor(weights["decoder_norm"]["scale"]))
model.spec_out.weight = nn.Parameter(torch.Tensor(weights["spec_out_dense"]["kernel"].T))
return model
def main(args):
t5_checkpoint = checkpoints.load_t5x_checkpoint(args.checkpoint_path)
t5_checkpoint = jnp.tree_util.tree_map(onp.array, t5_checkpoint)
gin_overrides = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
gin_file = os.path.join(args.checkpoint_path, "..", "config.gin")
gin_config = inference.parse_training_gin_file(gin_file, gin_overrides)
synth_model = inference.InferenceModel(args.checkpoint_path, gin_config)
scheduler = DDPMScheduler(beta_schedule="squaredcos_cap_v2", variance_type="fixed_large")
notes_encoder = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"],
vocab_size=synth_model.model.module.config.vocab_size,
d_model=synth_model.model.module.config.emb_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
num_layers=synth_model.model.module.config.num_encoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
feed_forward_proj="gated-gelu",
)
continuous_encoder = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims,
targets_context_length=synth_model.sequence_length["targets_context"],
d_model=synth_model.model.module.config.emb_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
num_layers=synth_model.model.module.config.num_encoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
feed_forward_proj="gated-gelu",
)
decoder = T5FilmDecoder(
input_dims=synth_model.audio_codec.n_dims,
targets_length=synth_model.sequence_length["targets_context"],
max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time,
d_model=synth_model.model.module.config.emb_dim,
num_layers=synth_model.model.module.config.num_decoder_layers,
num_heads=synth_model.model.module.config.num_heads,
d_kv=synth_model.model.module.config.head_dim,
d_ff=synth_model.model.module.config.mlp_dim,
dropout_rate=synth_model.model.module.config.dropout_rate,
)
notes_encoder = load_notes_encoder(t5_checkpoint["target"]["token_encoder"], notes_encoder)
continuous_encoder = load_continuous_encoder(t5_checkpoint["target"]["continuous_encoder"], continuous_encoder)
decoder = load_decoder(t5_checkpoint["target"]["decoder"], decoder)
melgan = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder")
pipe = SpectrogramDiffusionPipeline(
notes_encoder=notes_encoder,
continuous_encoder=continuous_encoder,
decoder=decoder,
scheduler=scheduler,
melgan=melgan,
)
if args.save:
pipe.save_pretrained(args.output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output_path", default=None, type=str, required=True, help="Path to the converted model.")
parser.add_argument(
"--save", default=True, type=bool, required=False, help="Whether to save the converted model or not."
)
parser.add_argument(
"--checkpoint_path",
default=f"{MODEL}/checkpoint_500000",
type=str,
required=False,
help="Path to the original jax model checkpoint.",
)
args = parser.parse_args()
main(args)
|