File size: 32,806 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
from diffusers.utils import is_accelerate_available, logging


if is_accelerate_available():
    pass

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def create_unet_diffusers_config(original_config, image_size: int, controlnet=False):
    """
    Creates a config for the diffusers based on the config of the LDM model.
    """
    if controlnet:
        unet_params = original_config.model.params.control_stage_config.params
    else:
        if "unet_config" in original_config.model.params and original_config.model.params.unet_config is not None:
            unet_params = original_config.model.params.unet_config.params
        else:
            unet_params = original_config.model.params.network_config.params

    vae_params = original_config.model.params.first_stage_config.params.encoder_config.params

    block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult]

    down_block_types = []
    resolution = 1
    for i in range(len(block_out_channels)):
        block_type = (
            "CrossAttnDownBlockSpatioTemporal"
            if resolution in unet_params.attention_resolutions
            else "DownBlockSpatioTemporal"
        )
        down_block_types.append(block_type)
        if i != len(block_out_channels) - 1:
            resolution *= 2

    up_block_types = []
    for i in range(len(block_out_channels)):
        block_type = (
            "CrossAttnUpBlockSpatioTemporal"
            if resolution in unet_params.attention_resolutions
            else "UpBlockSpatioTemporal"
        )
        up_block_types.append(block_type)
        resolution //= 2

    if unet_params.transformer_depth is not None:
        transformer_layers_per_block = (
            unet_params.transformer_depth
            if isinstance(unet_params.transformer_depth, int)
            else list(unet_params.transformer_depth)
        )
    else:
        transformer_layers_per_block = 1

    vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1)

    head_dim = unet_params.num_heads if "num_heads" in unet_params else None
    use_linear_projection = (
        unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False
    )
    if use_linear_projection:
        # stable diffusion 2-base-512 and 2-768
        if head_dim is None:
            head_dim_mult = unet_params.model_channels // unet_params.num_head_channels
            head_dim = [head_dim_mult * c for c in list(unet_params.channel_mult)]

    class_embed_type = None
    addition_embed_type = None
    addition_time_embed_dim = None
    projection_class_embeddings_input_dim = None
    context_dim = None

    if unet_params.context_dim is not None:
        context_dim = (
            unet_params.context_dim if isinstance(unet_params.context_dim, int) else unet_params.context_dim[0]
        )

    if "num_classes" in unet_params:
        if unet_params.num_classes == "sequential":
            addition_time_embed_dim = 256
            assert "adm_in_channels" in unet_params
            projection_class_embeddings_input_dim = unet_params.adm_in_channels

    config = {
        "sample_size": image_size // vae_scale_factor,
        "in_channels": unet_params.in_channels,
        "down_block_types": tuple(down_block_types),
        "block_out_channels": tuple(block_out_channels),
        "layers_per_block": unet_params.num_res_blocks,
        "cross_attention_dim": context_dim,
        "attention_head_dim": head_dim,
        "use_linear_projection": use_linear_projection,
        "class_embed_type": class_embed_type,
        "addition_embed_type": addition_embed_type,
        "addition_time_embed_dim": addition_time_embed_dim,
        "projection_class_embeddings_input_dim": projection_class_embeddings_input_dim,
        "transformer_layers_per_block": transformer_layers_per_block,
    }

    if "disable_self_attentions" in unet_params:
        config["only_cross_attention"] = unet_params.disable_self_attentions

    if "num_classes" in unet_params and isinstance(unet_params.num_classes, int):
        config["num_class_embeds"] = unet_params.num_classes

    if controlnet:
        config["conditioning_channels"] = unet_params.hint_channels
    else:
        config["out_channels"] = unet_params.out_channels
        config["up_block_types"] = tuple(up_block_types)

    return config


def assign_to_checkpoint(
    paths,
    checkpoint,
    old_checkpoint,
    attention_paths_to_split=None,
    additional_replacements=None,
    config=None,
    mid_block_suffix="",
):
    """
    This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
    attention layers, and takes into account additional replacements that may arise.

    Assigns the weights to the new checkpoint.
    """
    assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys."

    # Splits the attention layers into three variables.
    if attention_paths_to_split is not None:
        for path, path_map in attention_paths_to_split.items():
            old_tensor = old_checkpoint[path]
            channels = old_tensor.shape[0] // 3

            target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)

            num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3

            old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:])
            query, key, value = old_tensor.split(channels // num_heads, dim=1)

            checkpoint[path_map["query"]] = query.reshape(target_shape)
            checkpoint[path_map["key"]] = key.reshape(target_shape)
            checkpoint[path_map["value"]] = value.reshape(target_shape)

    if mid_block_suffix is not None:
        mid_block_suffix = f".{mid_block_suffix}"
    else:
        mid_block_suffix = ""

    for path in paths:
        new_path = path["new"]

        # These have already been assigned
        if attention_paths_to_split is not None and new_path in attention_paths_to_split:
            continue

        # Global renaming happens here
        new_path = new_path.replace("middle_block.0", f"mid_block.resnets.0{mid_block_suffix}")
        new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
        new_path = new_path.replace("middle_block.2", f"mid_block.resnets.1{mid_block_suffix}")

        if additional_replacements is not None:
            for replacement in additional_replacements:
                new_path = new_path.replace(replacement["old"], replacement["new"])

        if new_path == "mid_block.resnets.0.spatial_res_block.norm1.weight":
            print("yeyy")

        # proj_attn.weight has to be converted from conv 1D to linear
        is_attn_weight = "proj_attn.weight" in new_path or ("attentions" in new_path and "to_" in new_path)
        shape = old_checkpoint[path["old"]].shape
        if is_attn_weight and len(shape) == 3:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
        elif is_attn_weight and len(shape) == 4:
            checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
        else:
            checkpoint[new_path] = old_checkpoint[path["old"]]


def renew_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        #         new_item = new_item.replace('norm.weight', 'group_norm.weight')
        #         new_item = new_item.replace('norm.bias', 'group_norm.bias')

        #         new_item = new_item.replace('proj_out.weight', 'proj_attn.weight')
        #         new_item = new_item.replace('proj_out.bias', 'proj_attn.bias')

        #         new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)
        new_item = new_item.replace("time_stack", "temporal_transformer_blocks")

        new_item = new_item.replace("time_pos_embed.0.bias", "time_pos_embed.linear_1.bias")
        new_item = new_item.replace("time_pos_embed.0.weight", "time_pos_embed.linear_1.weight")
        new_item = new_item.replace("time_pos_embed.2.bias", "time_pos_embed.linear_2.bias")
        new_item = new_item.replace("time_pos_embed.2.weight", "time_pos_embed.linear_2.weight")

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def shave_segments(path, n_shave_prefix_segments=1):
    """
    Removes segments. Positive values shave the first segments, negative shave the last segments.
    """
    if n_shave_prefix_segments >= 0:
        return ".".join(path.split(".")[n_shave_prefix_segments:])
    else:
        return ".".join(path.split(".")[:n_shave_prefix_segments])


def renew_resnet_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("emb_layers.1", "time_emb_proj")
        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = new_item.replace("time_stack.", "")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def convert_ldm_unet_checkpoint(
    checkpoint, config, path=None, extract_ema=False, controlnet=False, skip_extract_state_dict=False
):
    """
    Takes a state dict and a config, and returns a converted checkpoint.
    """

    if skip_extract_state_dict:
        unet_state_dict = checkpoint
    else:
        # extract state_dict for UNet
        unet_state_dict = {}
        keys = list(checkpoint.keys())

        unet_key = "model.diffusion_model."

        # at least a 100 parameters have to start with `model_ema` in order for the checkpoint to be EMA
        if sum(k.startswith("model_ema") for k in keys) > 100 and extract_ema:
            logger.warning(f"Checkpoint {path} has both EMA and non-EMA weights.")
            logger.warning(
                "In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA"
                " weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag."
            )
            for key in keys:
                if key.startswith("model.diffusion_model"):
                    flat_ema_key = "model_ema." + "".join(key.split(".")[1:])
                    unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key)
        else:
            if sum(k.startswith("model_ema") for k in keys) > 100:
                logger.warning(
                    "In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA"
                    " weights (usually better for inference), please make sure to add the `--extract_ema` flag."
                )

            for key in keys:
                if key.startswith(unet_key):
                    unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key)

    new_checkpoint = {}

    new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"]
    new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"]
    new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"]
    new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"]

    if config["class_embed_type"] is None:
        # No parameters to port
        ...
    elif config["class_embed_type"] == "timestep" or config["class_embed_type"] == "projection":
        new_checkpoint["class_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
        new_checkpoint["class_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
        new_checkpoint["class_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
        new_checkpoint["class_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]
    else:
        raise NotImplementedError(f"Not implemented `class_embed_type`: {config['class_embed_type']}")

    # if config["addition_embed_type"] == "text_time":
    new_checkpoint["add_embedding.linear_1.weight"] = unet_state_dict["label_emb.0.0.weight"]
    new_checkpoint["add_embedding.linear_1.bias"] = unet_state_dict["label_emb.0.0.bias"]
    new_checkpoint["add_embedding.linear_2.weight"] = unet_state_dict["label_emb.0.2.weight"]
    new_checkpoint["add_embedding.linear_2.bias"] = unet_state_dict["label_emb.0.2.bias"]

    new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"]
    new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"]

    new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"]
    new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"]
    new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"]
    new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"]

    # Retrieves the keys for the input blocks only
    num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer})
    input_blocks = {
        layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key]
        for layer_id in range(num_input_blocks)
    }

    # Retrieves the keys for the middle blocks only
    num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer})
    middle_blocks = {
        layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key]
        for layer_id in range(num_middle_blocks)
    }

    # Retrieves the keys for the output blocks only
    num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer})
    output_blocks = {
        layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key]
        for layer_id in range(num_output_blocks)
    }

    for i in range(1, num_input_blocks):
        block_id = (i - 1) // (config["layers_per_block"] + 1)
        layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1)

        spatial_resnets = [
            key
            for key in input_blocks[i]
            if f"input_blocks.{i}.0" in key
            and (
                f"input_blocks.{i}.0.op" not in key
                and f"input_blocks.{i}.0.time_stack" not in key
                and f"input_blocks.{i}.0.time_mixer" not in key
            )
        ]
        temporal_resnets = [key for key in input_blocks[i] if f"input_blocks.{i}.0.time_stack" in key]
        # import ipdb; ipdb.set_trace()
        attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key]

        if f"input_blocks.{i}.0.op.weight" in unet_state_dict:
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.weight"
            )
            new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop(
                f"input_blocks.{i}.0.op.bias"
            )

        paths = renew_resnet_paths(spatial_resnets)
        meta_path = {
            "old": f"input_blocks.{i}.0",
            "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
        }
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        paths = renew_resnet_paths(temporal_resnets)
        meta_path = {
            "old": f"input_blocks.{i}.0",
            "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
        }
        assign_to_checkpoint(
            paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
        )

        # TODO resnet time_mixer.mix_factor
        if f"input_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
            new_checkpoint[
                f"down_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"
            ] = unet_state_dict[f"input_blocks.{i}.0.time_mixer.mix_factor"]

        if len(attentions):
            paths = renew_attention_paths(attentions)
            meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"}
            # import ipdb; ipdb.set_trace()
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

    resnet_0 = middle_blocks[0]
    attentions = middle_blocks[1]
    resnet_1 = middle_blocks[2]

    resnet_0_spatial = [key for key in resnet_0 if "time_stack" not in key and "time_mixer" not in key]
    resnet_0_paths = renew_resnet_paths(resnet_0_spatial)
    # import ipdb; ipdb.set_trace()
    assign_to_checkpoint(
        resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
    )

    resnet_0_temporal = [key for key in resnet_0 if "time_stack" in key and "time_mixer" not in key]
    resnet_0_paths = renew_resnet_paths(resnet_0_temporal)
    assign_to_checkpoint(
        resnet_0_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
    )

    resnet_1_spatial = [key for key in resnet_1 if "time_stack" not in key and "time_mixer" not in key]
    resnet_1_paths = renew_resnet_paths(resnet_1_spatial)
    assign_to_checkpoint(
        resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="spatial_res_block"
    )

    resnet_1_temporal = [key for key in resnet_1 if "time_stack" in key and "time_mixer" not in key]
    resnet_1_paths = renew_resnet_paths(resnet_1_temporal)
    assign_to_checkpoint(
        resnet_1_paths, new_checkpoint, unet_state_dict, config=config, mid_block_suffix="temporal_res_block"
    )

    new_checkpoint["mid_block.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
        "middle_block.0.time_mixer.mix_factor"
    ]
    new_checkpoint["mid_block.resnets.1.time_mixer.mix_factor"] = unet_state_dict[
        "middle_block.2.time_mixer.mix_factor"
    ]

    attentions_paths = renew_attention_paths(attentions)
    meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(
        attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
    )

    for i in range(num_output_blocks):
        block_id = i // (config["layers_per_block"] + 1)
        layer_in_block_id = i % (config["layers_per_block"] + 1)
        output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]]
        output_block_list = {}

        for layer in output_block_layers:
            layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1)
            if layer_id in output_block_list:
                output_block_list[layer_id].append(layer_name)
            else:
                output_block_list[layer_id] = [layer_name]

        if len(output_block_list) > 1:
            spatial_resnets = [
                key
                for key in output_blocks[i]
                if f"output_blocks.{i}.0" in key
                and (f"output_blocks.{i}.0.time_stack" not in key and "time_mixer" not in key)
            ]
            # import ipdb; ipdb.set_trace()

            temporal_resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0.time_stack" in key]

            paths = renew_resnet_paths(spatial_resnets)
            meta_path = {
                "old": f"output_blocks.{i}.0",
                "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.spatial_res_block",
            }
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            paths = renew_resnet_paths(temporal_resnets)
            meta_path = {
                "old": f"output_blocks.{i}.0",
                "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}.temporal_res_block",
            }
            assign_to_checkpoint(
                paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
            )

            if f"output_blocks.{i}.0.time_mixer.mix_factor" in unet_state_dict:
                new_checkpoint[
                    f"up_blocks.{block_id}.resnets.{layer_in_block_id}.time_mixer.mix_factor"
                ] = unet_state_dict[f"output_blocks.{i}.0.time_mixer.mix_factor"]

            output_block_list = {k: sorted(v) for k, v in output_block_list.items()}
            if ["conv.bias", "conv.weight"] in output_block_list.values():
                index = list(output_block_list.values()).index(["conv.bias", "conv.weight"])
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.weight"
                ]
                new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[
                    f"output_blocks.{i}.{index}.conv.bias"
                ]

                # Clear attentions as they have been attributed above.
                if len(attentions) == 2:
                    attentions = []

            attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key and "conv" not in key]
            if len(attentions):
                paths = renew_attention_paths(attentions)
                # import ipdb; ipdb.set_trace()
                meta_path = {
                    "old": f"output_blocks.{i}.1",
                    "new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}",
                }
                assign_to_checkpoint(
                    paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config
                )
        else:
            spatial_layers = [
                layer for layer in output_block_layers if "time_stack" not in layer and "time_mixer" not in layer
            ]
            resnet_0_paths = renew_resnet_paths(spatial_layers, n_shave_prefix_segments=1)
            # import ipdb; ipdb.set_trace()
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(
                    ["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "spatial_res_block", path["new"]]
                )

                new_checkpoint[new_path] = unet_state_dict[old_path]

            temporal_layers = [
                layer for layer in output_block_layers if "time_stack" in layer and "time_mixer" not in key
            ]
            resnet_0_paths = renew_resnet_paths(temporal_layers, n_shave_prefix_segments=1)
            # import ipdb; ipdb.set_trace()
            for path in resnet_0_paths:
                old_path = ".".join(["output_blocks", str(i), path["old"]])
                new_path = ".".join(
                    ["up_blocks", str(block_id), "resnets", str(layer_in_block_id), "temporal_res_block", path["new"]]
                )

                new_checkpoint[new_path] = unet_state_dict[old_path]

            new_checkpoint["up_blocks.0.resnets.0.time_mixer.mix_factor"] = unet_state_dict[
                f"output_blocks.{str(i)}.0.time_mixer.mix_factor"
            ]

    return new_checkpoint


def conv_attn_to_linear(checkpoint):
    keys = list(checkpoint.keys())
    attn_keys = ["to_q.weight", "to_k.weight", "to_v.weight"]
    for key in keys:
        if ".".join(key.split(".")[-2:]) in attn_keys:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0, 0]
        elif "proj_attn.weight" in key:
            if checkpoint[key].ndim > 2:
                checkpoint[key] = checkpoint[key][:, :, 0]


def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0, is_temporal=False):
    """
    Updates paths inside resnets to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        # Temporal resnet
        new_item = old_item.replace("in_layers.0", "norm1")
        new_item = new_item.replace("in_layers.2", "conv1")

        new_item = new_item.replace("out_layers.0", "norm2")
        new_item = new_item.replace("out_layers.3", "conv2")

        new_item = new_item.replace("skip_connection", "conv_shortcut")

        new_item = new_item.replace("time_stack.", "temporal_res_block.")

        # Spatial resnet
        new_item = new_item.replace("conv1", "spatial_res_block.conv1")
        new_item = new_item.replace("norm1", "spatial_res_block.norm1")

        new_item = new_item.replace("conv2", "spatial_res_block.conv2")
        new_item = new_item.replace("norm2", "spatial_res_block.norm2")

        new_item = new_item.replace("nin_shortcut", "spatial_res_block.conv_shortcut")

        new_item = new_item.replace("mix_factor", "spatial_res_block.time_mixer.mix_factor")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
    """
    Updates paths inside attentions to the new naming scheme (local renaming)
    """
    mapping = []
    for old_item in old_list:
        new_item = old_item

        new_item = new_item.replace("norm.weight", "group_norm.weight")
        new_item = new_item.replace("norm.bias", "group_norm.bias")

        new_item = new_item.replace("q.weight", "to_q.weight")
        new_item = new_item.replace("q.bias", "to_q.bias")

        new_item = new_item.replace("k.weight", "to_k.weight")
        new_item = new_item.replace("k.bias", "to_k.bias")

        new_item = new_item.replace("v.weight", "to_v.weight")
        new_item = new_item.replace("v.bias", "to_v.bias")

        new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
        new_item = new_item.replace("proj_out.bias", "to_out.0.bias")

        new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments)

        mapping.append({"old": old_item, "new": new_item})

    return mapping


def convert_ldm_vae_checkpoint(checkpoint, config):
    # extract state dict for VAE
    vae_state_dict = {}
    keys = list(checkpoint.keys())
    vae_key = "first_stage_model." if any(k.startswith("first_stage_model.") for k in keys) else ""
    for key in keys:
        if key.startswith(vae_key):
            vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)

    new_checkpoint = {}

    new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
    new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
    new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"]
    new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
    new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"]
    new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"]

    new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
    new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
    new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"]
    new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
    new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"]
    new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"]
    new_checkpoint["decoder.time_conv_out.weight"] = vae_state_dict["decoder.time_mix_conv.weight"]
    new_checkpoint["decoder.time_conv_out.bias"] = vae_state_dict["decoder.time_mix_conv.bias"]

    # new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
    # new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
    # new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
    # new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]

    # Retrieves the keys for the encoder down blocks only
    num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer})
    down_blocks = {
        layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks)
    }

    # Retrieves the keys for the decoder up blocks only
    num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer})
    up_blocks = {
        layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks)
    }

    for i in range(num_down_blocks):
        resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key]

        if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.weight"
            )
            new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop(
                f"encoder.down.{i}.downsample.conv.bias"
            )

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)

    for i in range(num_up_blocks):
        block_id = num_up_blocks - 1 - i

        resnets = [
            key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
        ]

        if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.weight"
            ]
            new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[
                f"decoder.up.{block_id}.upsample.conv.bias"
            ]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
    num_mid_res_blocks = 2
    for i in range(1, num_mid_res_blocks + 1):
        resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]

        paths = renew_vae_resnet_paths(resnets)
        meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
        assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)

    mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
    paths = renew_vae_attention_paths(mid_attentions)
    meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
    assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config)
    conv_attn_to_linear(new_checkpoint)
    return new_checkpoint