File size: 72,899 Bytes
87d40d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
import torch.nn.init as init
import argparse
from cgitb import text
import copy
import gc
import itertools
import logging
import math
import os
import random
import shutil
from tkinter import NO
import warnings
from contextlib import nullcontext
from pathlib import Path
import PIL.Image
import PIL.ImageOps
import numpy as np
from sympy import N
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, PretrainedConfig, T5EncoderModel, T5TokenizerFast
# from transformer_sd3 import SD3Transformer2DModel

import diffusers
from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    StableDiffusion3Pipeline,
    SD3Transformer2DModel,
    StableDiffusion3InstructPix2PixPipeline
)
from diffusers.optimization import get_scheduler
from diffusers.utils import (
    check_min_version,
    is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module

import accelerate
import datasets
import PIL
import requests
import torch.nn as nn
import torch.nn.functional as F
from os.path import join
from datasets import load_dataset
from packaging import version


def load_text_encoders(class_one, class_two, class_three):
    text_encoder_one = class_one.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
    )
    text_encoder_two = class_two.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
    )
    text_encoder_three = class_three.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant
    )
    return text_encoder_one, text_encoder_two, text_encoder_three


def tokenize_prompt(tokenizer, prompt, max_sequence_length=77):
    text_inputs = tokenizer(
        prompt,
        padding="max_length",
        max_length=max_sequence_length,
        truncation=True,
        return_tensors="pt",
    )
    text_input_ids = text_inputs.input_ids
    return text_input_ids


def _encode_prompt_with_t5(
        text_encoder,
        tokenizer,
        max_sequence_length,
        text_encoder_dtype,
        prompt=None,
        num_images_per_prompt=1,
        device=None,
        text_input_ids=None

):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    batch_size = len(prompt)
    if text_input_ids is None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=max_sequence_length,
            truncation=True,
            add_special_tokens=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
    prompt_embeds = text_encoder(text_input_ids.to(device))[0]

    prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device)

    _, seq_len, _ = prompt_embeds.shape

    # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    return prompt_embeds


def _encode_prompt_with_clip(
        text_encoder,
        tokenizer,
        prompt: str,
        text_encoder_dtype,
        device=None,
        num_images_per_prompt: int = 1,
        text_input_ids=None
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    batch_size = len(prompt)
    if text_input_ids is None:
        text_inputs = tokenizer(
            prompt,
            padding="max_length",
            max_length=77,
            truncation=True,
            return_tensors="pt",
        )

        text_input_ids = text_inputs.input_ids
    prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)

    pooled_prompt_embeds = prompt_embeds[0]
    prompt_embeds = prompt_embeds.hidden_states[-2]
    prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device)

    _, seq_len, _ = prompt_embeds.shape
    # duplicate text embeddings for each generation per prompt, using mps friendly method
    prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
    prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

    return prompt_embeds, pooled_prompt_embeds


def encode_prompt(
        text_encoders,
        tokenizers,
        prompt: str,
        max_sequence_length=None,
        text_encoders_dtypes=[torch.float32,torch.float32,torch.float32],
        device=None,
        num_images_per_prompt: int = 1,
        text_input_ids_list=None
):
    prompt = [prompt] if isinstance(prompt, str) else prompt
    clip_prompt_embeds_list = []
    clip_pooled_prompt_embeds_list = []
    clip_tokenizers = tokenizers[:2]
    clip_text_encoders = text_encoders[:2]
    clip_text_encoders_dtypes = text_encoders_dtypes[:2]
    if text_input_ids_list is not None:
        clip_text_input_ids_list = text_input_ids_list[:2]
    else:
        clip_text_input_ids_list = [None, None]
    zipped_text_encoders = zip(clip_tokenizers, clip_text_encoders, clip_text_encoders_dtypes, clip_text_input_ids_list)
    for tokenizer, text_encoder, clip_text_encoder_dtype, text_input_ids in zipped_text_encoders:
        prompt_embeds, pooled_prompt_embeds = _encode_prompt_with_clip(
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            prompt=prompt,
            text_encoder_dtype=clip_text_encoder_dtype,
            device=device if device is not None else text_encoder.device,
            num_images_per_prompt=num_images_per_prompt,
            text_input_ids=text_input_ids,

        )
        clip_prompt_embeds_list.append(prompt_embeds)
        clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds)

    clip_prompt_embeds = torch.cat(clip_prompt_embeds_list, dim=-1)
    pooled_prompt_embeds = torch.cat(clip_pooled_prompt_embeds_list, dim=-1)

    if text_input_ids_list is not None:
        t5_text_input_ids = text_input_ids_list[-1]
    else:
        t5_text_input_ids = None
    t5_prompt_embed = _encode_prompt_with_t5(
        text_encoders[-1],
        tokenizers[-1],
        max_sequence_length,
        clip_text_encoders_dtypes[-1],
        prompt=prompt,
        num_images_per_prompt=num_images_per_prompt,
        device=device if device is not None else text_encoders[-1].device,
        text_input_ids=t5_text_input_ids
    )

    clip_prompt_embeds = torch.nn.functional.pad(
        clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
    )
    prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)

    return prompt_embeds, pooled_prompt_embeds


logger = get_logger(__name__, log_level="INFO")

DATASET_NAME_MAPPING = {
    "BleachNick/UltraEdit_500k": ("source_image", "edited_image", "edit_prompt"),
}
WANDB_TABLE_COL_NAMES = ["source_image", "edited_image", "edit_prompt"]


def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--ori_model_name_or_path",
        type=str,
        default=None,
        help="Path to ori_model_name_or_path.",
    )
    parser.add_argument(
        "--weighting_scheme", type=str, default="logit_normal", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"]
    )
    parser.add_argument(
        "--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
    )
    parser.add_argument(
        "--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
    )
    parser.add_argument(
        "--mode_scale",
        type=float,
        default=1.29,
        help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
    )

    parser.add_argument(
        "--optimizer",
        type=str,
        default="AdamW",
        help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
    )

    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
    )

    parser.add_argument(
        "--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
    )
    parser.add_argument(
        "--prodigy_beta3",
        type=float,
        default=None,
        help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
             "uses the value of square root of beta2. Ignored if optimizer is adamW",
    )

    parser.add_argument(
        "--prodigy_use_bias_correction",
        type=bool,
        default=True,
        help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
    )
    parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
    parser.add_argument(
        "--prodigy_safeguard_warmup",
        type=bool,
        default=True,
        help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
             "Ignored if optimizer is adamW",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
    )
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that 🤗 Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_jsonl",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--original_image_column",
        type=str,
        default="source_image",
        help="The column of the dataset containing the original image on which edits where made.",
    )
    parser.add_argument(
        "--config_file",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--edited_image_column",
        type=str,
        default="edited_image",
        help="The column of the dataset containing the edited image.",
    )
    parser.add_argument(
        "--edit_prompt_column",
        type=str,
        default="edit_prompt",
        help="The column of the dataset containing the edit instruction.",
    )
    parser.add_argument(
        "--val_image_url",
        type=str,
        default=None,
        help="URL to the original image that you would like to edit (used during inference for debugging purposes).",
    )
    parser.add_argument(
        '--val_mask_url',
        type=str,
        default=None,
        help="URL to the mask image that you would like to edit (used during inference for debugging purposes).",
    )
    parser.add_argument(
        "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference."
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_epochs",
        type=int,
        default=1,
        help=(
            "Run fine-tuning validation every X epochs. The validation process consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--validation_step",
        type=int,
        default=5000,
        help=(
            "Run fine-tuning validation every X steps. The validation process consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`."
        ),
    )
    parser.add_argument(
        "--top_training_data_sample",
        type=int,
        default=None,
        help="Number of top samples to use for training, ranked by clip-sim-dit. If None, use the full dataset.",
    )
    parser.add_argument(
        "--max_train_samples",
        type=int,
        default=None,
        help=(
            "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="sd3_edit",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=256,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--eval_resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--max_sequence_length",
        type=int,
        default=77,
        help="Maximum sequence length to use with with the T5 text encoder",
    )
    parser.add_argument(
        "--center_crop",
        default=False,
        action="store_true",
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
    )
    parser.add_argument(
        "--random_flip",
        action="store_true",
        help="whether to randomly flip images horizontally",
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument("--num_train_epochs", type=int, default=100)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--conditioning_dropout_prob",
        type=float,
        default=None,
        help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.",
    )

    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )

    parser.add_argument(
        "--text_encoder_lr",
        type=float,
        default=5e-6,
        help="Text encoder learning rate to use.",
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default=None,
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
        ),
    )
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--checkpoints_total_limit",
        type=int,
        default=None,
        help=("Max number of checkpoints to store."),
    )
    parser.add_argument(
        "--train_text_encoder",
        action="store_true"
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
    parser.add_argument(
        "--do_mask", action="store_true", help="Whether or not to use xformers."
    )
    parser.add_argument(
        "--mask_column",
        type=str,
        default="mask_image",
        help="The column of the dataset containing the original image`s mask.",
    )
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    # Sanity checks
    if args.dataset_name is None and args.train_data_jsonl is None:
        raise ValueError("Need either a dataset name or a training folder.")

    # default to using the same revision for the non-ema model if not specified

    return args


def combine_rgb_and_mask_to_rgba(rgb_image, mask_image):
    # Ensure the input images are the same size
    if rgb_image.size != mask_image.size:
        raise ValueError("The RGB image and the mask image must have the same dimensions")

    # Convert the mask image to 'L' mode (grayscale) if it is not
    if mask_image.mode != 'L':
        mask_image = mask_image.convert('L')

    # Split the RGB image into its three channels
    r, g, b = rgb_image.split()

    # Combine the RGB channels with the mask to form an RGBA image
    rgba_image = Image.merge("RGBA", (r, g, b, mask_image))

    return rgba_image


def convert_to_np(image, resolution):
    try:
        if isinstance(image, str):
            if image == "NONE":
                image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
            else:
                image = PIL.Image.open(image)
        image = image.convert("RGB").resize((resolution, resolution))
        return np.array(image).transpose(2, 0, 1)
    except Exception as e:
        print("Load error", image)
        print(e)
        # New blank image
        image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
        return np.array(image).transpose(2, 0, 1)


def import_model_class_from_model_name_or_path(
        pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path, subfolder=subfolder, revision=revision
    )
    model_class = text_encoder_config.architectures[0]
    if model_class == "CLIPTextModelWithProjection":
        from transformers import CLIPTextModelWithProjection

        return CLIPTextModelWithProjection
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
    else:
        raise ValueError(f"{model_class} is not supported.")


def main():
    if args.report_to == "wandb" and args.hub_token is not None:
        raise ValueError(
            "You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
            " Please use `huggingface-cli login` to authenticate with the Hub."
        )

    logging_dir = os.path.join(args.output_dir, args.logging_dir)
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
    from accelerate import DistributedDataParallelKwargs as DDPK
    kwargs = DDPK(find_unused_parameters=True)
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=args.report_to,
        project_config=accelerator_project_config,
        kwargs_handlers=[kwargs],
    )
    if torch.backends.mps.is_available():
        accelerator.native_amp = False

    def download_image(path_or_url,resolution=512):
        # Check if path_or_url is a local file path
        if path_or_url is None:
            # return a white RBG image image
            return PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
        if os.path.exists(path_or_url):
            image = Image.open(path_or_url).convert("RGB").resize((resolution, resolution))

        else:
            image = Image.open(requests.get(path_or_url, stream=True).raw).convert("RGB")

        image = PIL.ImageOps.exif_transpose(image)
        return image

    generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)

    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
        import wandb

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
    if args.seed is not None:
        set_seed(args.seed)

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

    # Load scheduler, tokenizer and models.

    # Load the tokenizers
    tokenizer_one = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer",
        revision=args.revision,
    )
    tokenizer_two = CLIPTokenizer.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_2",
        revision=args.revision,
    )
    tokenizer_three = T5TokenizerFast.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="tokenizer_3",
        revision=args.revision,
    )

    # import correct text encoder classes
    text_encoder_cls_one = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision
    )
    text_encoder_cls_two = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
    )
    text_encoder_cls_three = import_model_class_from_model_name_or_path(
        args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
    )

    # Load scheduler and models
    noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="scheduler"
    )
    noise_scheduler_copy = copy.deepcopy(noise_scheduler)
    text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
        text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
    )
    vae = AutoencoderKL.from_pretrained(
        args.pretrained_model_name_or_path,
        subfolder="vae",
        revision=args.revision,
        variant=args.variant,
    )
    transformer = SD3Transformer2DModel.from_pretrained(
        args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant
    )

    # TODO
    logger.info("Initializing the new channel of DIT from the pretrained DIT.")
    in_channels = int(1.5 * transformer.config.in_channels) if args.do_mask else 2 * transformer.config.in_channels # 48 for mask
    out_channels = transformer.pos_embed.proj.out_channels

    load_num_channel = transformer.config.in_channels
    print("Do mask",args.do_mask)
    print("new in_channels",in_channels)
    print("load_num_channel",load_num_channel)

    transformer.register_to_config(in_channels=in_channels)
    print("transformer.pos_embed.proj.weight.shape", transformer.pos_embed.proj.weight.shape)
    print("load_num_channel", load_num_channel)
    with torch.no_grad():

        new_proj = nn.Conv2d(
            in_channels, out_channels, kernel_size=(transformer.config.patch_size, transformer.config.patch_size),
            stride=transformer.config.patch_size, bias=True
        )
        print("new_proj", new_proj)

        new_proj.weight.zero_()
        # init.kaiming_normal_(new_proj.weight, mode='fan_out', nonlinearity='relu')
        # if new_proj.bias is not None and transformer.pos_embed.proj.bias is not None:
        #     new_proj.bias.copy_(transformer.pos_embed.proj.bias)
        # else:
        #     if new_proj.bias is not None:
        #         new_proj.bias.zero_()
        new_proj = new_proj.to(transformer.pos_embed.proj.weight.dtype)
        new_proj.weight[:, :load_num_channel, :, :].copy_(transformer.pos_embed.proj.weight)
        new_proj.bias.copy_(transformer.pos_embed.proj.bias)
        print("new_proj", new_proj.weight.shape)
        print("transformer.pos_embed.proj", transformer.pos_embed.proj.weight.shape)
        transformer.pos_embed.proj = new_proj

    for param in transformer.parameters():
        param.requires_grad = True


    transformer.requires_grad_(True)
    vae.requires_grad_(False)
    if args.train_text_encoder:
        text_encoder_one.requires_grad_(True)
        text_encoder_two.requires_grad_(True)
        text_encoder_three.requires_grad_(True)
    else:
        text_encoder_one.requires_grad_(False)
        text_encoder_two.requires_grad_(False)
        text_encoder_three.requires_grad_(False)

    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision
    # as these weights are only used for inference, keeping weights in full precision is not required.
    weight_dtype = torch.float32
    if accelerator.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif accelerator.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
        # due to pytorch#99272, MPS does not yet support bfloat16.
        raise ValueError(
            "Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
        )

    vae.to(accelerator.device, dtype=torch.float32)

    if not args.train_text_encoder:
        text_encoder_one.to(accelerator.device, dtype=weight_dtype)
        text_encoder_two.to(accelerator.device, dtype=weight_dtype)
        text_encoder_three.to(accelerator.device, dtype=weight_dtype)

    if args.gradient_checkpointing:
        transformer.enable_gradient_checkpointing()
        if args.train_text_encoder:
            text_encoder_one.gradient_checkpointing_enable()
            text_encoder_two.gradient_checkpointing_enable()
            text_encoder_three.gradient_checkpointing_enable()

    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
        if accelerator.is_main_process:
            for i, model in enumerate(models):
                if isinstance(unwrap_model(model), SD3Transformer2DModel):
                    unwrap_model(model).save_pretrained(os.path.join(output_dir, "transformer"))
                elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)):
                    if isinstance(unwrap_model(model), CLIPTextModelWithProjection):
                        hidden_size = unwrap_model(model).config.hidden_size
                        if hidden_size == 768:
                            unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder"))
                        elif hidden_size == 1280:
                            unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_2"))
                    else:
                        unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_3"))
                else:
                    raise ValueError(f"Wrong model supplied: {type(model)=}.")

                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()

    def load_model_hook(models, input_dir):
        for _ in range(len(models)):
            # pop models so that they are not loaded again
            model = models.pop()

            # load diffusers style into model
            if isinstance(unwrap_model(model), SD3Transformer2DModel):
                load_model = SD3Transformer2DModel.from_pretrained(input_dir, subfolder="transformer")
                model.register_to_config(**load_model.config)

                model.load_state_dict(load_model.state_dict())
            elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)):
                try:
                    load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder")
                    model(**load_model.config)
                    model.load_state_dict(load_model.state_dict())
                except Exception:
                    try:
                        load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder_2")
                        model(**load_model.config)
                        model.load_state_dict(load_model.state_dict())
                    except Exception:
                        try:
                            load_model = T5EncoderModel.from_pretrained(input_dir, subfolder="text_encoder_3")
                            model(**load_model.config)
                            model.load_state_dict(load_model.state_dict())
                        except Exception:
                            raise ValueError(f"Couldn't load the model of type: ({type(model)}).")
            else:
                raise ValueError(f"Unsupported model found: {type(model)=}")

            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)

    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

    if args.scale_lr:
        args.learning_rate = (
                args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    transformer_parameters_with_lr = {"params": transformer.parameters(), "lr": args.learning_rate}
    if args.train_text_encoder:
        # different learning rate for text encoder and unet
        text_parameters_one_with_lr = {
            "params": text_encoder_one.parameters(),
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_parameters_two_with_lr = {
            "params": text_encoder_two.parameters(),
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        text_parameters_three_with_lr = {
            "params": text_encoder_three.parameters(),
            "weight_decay": args.adam_weight_decay_text_encoder,
            "lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
        }
        params_to_optimize = [
            transformer_parameters_with_lr,
            text_parameters_one_with_lr,
            text_parameters_two_with_lr,
            text_parameters_three_with_lr,
        ]
    else:
        params_to_optimize = [transformer_parameters_with_lr]

    if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
        logger.warning(
            f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
            "Defaulting to adamW"
        )
        args.optimizer = "adamw"

    # Initialize the optimizer
    if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
        logger.warning(
            f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
            f"set to {args.optimizer.lower()}"
        )

    if args.optimizer.lower() == "adamw":
        if args.use_8bit_adam:
            try:
                import bitsandbytes as bnb
            except ImportError:
                raise ImportError(
                    "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
                )

            optimizer_class = bnb.optim.AdamW8bit
        else:
            optimizer_class = torch.optim.AdamW

        optimizer = optimizer_class(
            params_to_optimize,
            betas=(args.adam_beta1, args.adam_beta2),
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
        )

    if args.optimizer.lower() == "prodigy":
        try:
            import prodigyopt
        except ImportError:
            raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")

        optimizer_class = prodigyopt.Prodigy

        if args.learning_rate <= 0.1:
            logger.warning(
                "Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
            )
        if args.train_text_encoder and args.text_encoder_lr:
            logger.warning(
                f"Learning rates were provided both for the transformer and the text encoder- e.g. text_encoder_lr:"
                f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
                f"When using prodigy only learning_rate is used as the initial learning rate."
            )
            # changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
            # --learning_rate
            params_to_optimize[1]["lr"] = args.learning_rate
            params_to_optimize[2]["lr"] = args.learning_rate
            params_to_optimize[3]["lr"] = args.learning_rate

        optimizer = optimizer_class(
            params_to_optimize,
            lr=args.learning_rate,
            betas=(args.adam_beta1, args.adam_beta2),
            beta3=args.prodigy_beta3,
            weight_decay=args.adam_weight_decay,
            eps=args.adam_epsilon,
            decouple=args.prodigy_decouple,
            use_bias_correction=args.prodigy_use_bias_correction,
            safeguard_warmup=args.prodigy_safeguard_warmup,
        )
    text_encoders_dtypes = [text_encoder_one.dtype, text_encoder_two.dtype, text_encoder_three.dtype]
    if not args.train_text_encoder:
        tokenizers = [tokenizer_one, tokenizer_two, tokenizer_three]
        text_encoders = [text_encoder_one, text_encoder_two, text_encoder_three]
        def compute_text_embeddings(prompt, text_encoders, tokenizers,text_encoders_dtypes):
            with torch.no_grad():
                prompt_embeds, pooled_prompt_embeds = encode_prompt(
                    text_encoders, tokenizers, prompt, args.max_sequence_length, text_encoders_dtypes
                )
                prompt_embeds = prompt_embeds.to(accelerator.device)
                pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
            return prompt_embeds, pooled_prompt_embeds

    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    if args.dataset_name is not None:
        # Downloading and loading a dataset from the hub.
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
        )
    else:
        if args.train_data_jsonl is not None:
            dataset = load_dataset(
                "json",
                data_files=args.train_data_jsonl,
                cache_dir=args.cache_dir,
                # split="train"
            )
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder

    # Preprocessing the datasets.
    # We need to tokenize inputs and targets.
    column_names = dataset["train"].column_names

    # 6. Get the column names for input/target.
    dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)

    if args.original_image_column is None:
        original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
    else:
        original_image_column = args.original_image_column
        if original_image_column not in column_names:
            raise ValueError(
                f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.edit_prompt_column is None:
        edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
    else:
        edit_prompt_column = args.edit_prompt_column
        if edit_prompt_column not in column_names:
            raise ValueError(
                f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}"
            )
    if args.edited_image_column is None:
        edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
    else:
        edited_image_column = args.edited_image_column
        if edited_image_column not in column_names:
            raise ValueError(
                f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}"
            )

    # Preprocessing the datasets.
    # We need to tokenize input captions and transform the images.
    # def tokenize_captions(captions):
    #     inputs = tokenizer(
    #         captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
    #     )
    #     return inputs.input_ids

    # Preprocessing the datasets.
    train_transforms = transforms.Compose(
        [
            transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
            transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
        ]
    )

    def preprocess_images(examples):

        original_images = np.concatenate(
            [convert_to_np(image, args.resolution) for image in examples[original_image_column]]
        )
        edited_images = np.concatenate(
            [convert_to_np(image, args.resolution) for image in examples[edited_image_column]]
        )
        if args.do_mask:
            mask_images = np.concatenate(
                [convert_to_np(image, args.resolution) for image in examples[args.mask_column]]
            )
            # We need to ensure that the original and the edited images undergo the same
            # augmentation transforms.
            images = np.concatenate([original_images, edited_images, mask_images])
            images = torch.tensor(images)
            images = 2 * (images / 255) - 1
            # mask_index = torch.tensor([image == "NONE" for image in examples[args.mask_column]],dtype=torch.bool)
            # return train_transforms(images),mask_index
            return train_transforms(images)
        # We need to ensure that the original and the edited images undergo the same
        # augmentation transforms.
        images = np.concatenate([original_images, edited_images])
        images = torch.tensor(images)
        images = 2 * (images / 255) - 1
        return train_transforms(images)

    def preprocess_train(examples):
        # Preprocess images.
        # Since the original and edited images were concatenated before
        # applying the transformations, we need to separate them and reshape
        # them accordingly.
        preprocessed_images = preprocess_images(examples)
        if not args.do_mask:
            # preprocessed_images = preprocess_images(examples)
            original_images, edited_images = preprocessed_images.chunk(2)
        else:
            # preprocessed_images = preprocess_images(examples)
            # preprocessed_images,mask_index = preprocess_images(examples)
            original_images, edited_images, mask_images = preprocessed_images.chunk(3)
            mask_images = mask_images.reshape(-1, 3, args.resolution, args.resolution)
            # examples["mask_index"] = mask_index
            examples["mask_pixel_values"] = mask_images
        original_images = original_images.reshape(-1, 3, args.resolution, args.resolution)
        edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution)

        examples["original_pixel_values"] = original_images
        examples["edited_pixel_values"] = edited_images

        # Preprocess the captions.
        # captions = list(examples[edit_prompt_column])
        # examples[edit_prompt_column] = captions
        return examples

    with accelerator.main_process_first():
        if args.top_training_data_sample is not None:
            dataset["train"] = dataset["train"].select(range(args.top_training_data_sample)).shuffle(seed=args.seed)

        if args.max_train_samples is not None:
            dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
        # Set the training transforms

        train_dataset = dataset["train"].with_transform(preprocess_train)

    def collate_fn(examples):
        original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples])
        original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float()
        edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples])
        edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float()
        prompts = [example[edit_prompt_column] for example in examples]
        if args.do_mask:
            mask_pixel_values = torch.stack([example["mask_pixel_values"] for example in examples])
            mask_pixel_values = mask_pixel_values.to(memory_format=torch.contiguous_format).float()
            return {
                "original_pixel_values": original_pixel_values,
                "edited_pixel_values": edited_pixel_values,
                edit_prompt_column: prompts,
                "mask_pixel_values": mask_pixel_values,
            }
        else:
            return {
                "original_pixel_values": original_pixel_values,
                "edited_pixel_values": edited_pixel_values,
                edit_prompt_column: prompts,

            }

    # DataLoaders creation:
    train_dataloader = torch.utils.data.DataLoader(
        train_dataset,
        shuffle=True,
        collate_fn=collate_fn,
        batch_size=args.train_batch_size,
        num_workers=args.dataloader_num_workers,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
    )

    # Prepare everything with our `accelerator`.
    if args.train_text_encoder:
        (
            transformer,
            text_encoder_one,
            text_encoder_two,
            text_encoder_three,
            optimizer,
            train_dataloader,
            lr_scheduler,
        ) = accelerator.prepare(
            transformer,
            text_encoder_one,
            text_encoder_two,
            text_encoder_three,
            optimizer,
            train_dataloader,
            lr_scheduler,
        )
    else:
        transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            transformer, optimizer, train_dataloader, lr_scheduler
        )

    # For mixed precision training we cast the text_encoder and vae weights to half-precision
    # as these models are only used for inference, keeping weights in full precision is not required.

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    if accelerator.is_main_process:
        pretrained_path = args.pretrained_model_name_or_path
        pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
            pretrained_path,
            vae=vae,
            text_encoder=accelerator.unwrap_model(text_encoder_one),
            text_encoder_2=accelerator.unwrap_model(text_encoder_two),
            text_encoder_3=accelerator.unwrap_model(text_encoder_three),
            transformer=accelerator.unwrap_model(transformer),
            revision=args.revision,
            variant=args.variant,
            torch_dtype=weight_dtype,
        )

        pipeline = pipeline.to(accelerator.device)
        pipeline.set_progress_bar_config(disable=True)
        generator = torch.Generator(device=accelerator.device).manual_seed(
            args.seed) if args.seed else None
        if args.do_mask:
            original_image = download_image(args.val_image_url, args.eval_resolution)
            mask_image = download_image(args.val_mask_url, args.eval_resolution)
        else:
            original_image = download_image(args.val_image_url, args.eval_resolution)
            mask_image = None

        edited_images = []
        with torch.autocast(
                str(accelerator.device).replace(":0", ""),
                enabled=(accelerator.mixed_precision == "fp16") | (
                        accelerator.mixed_precision == "bf16")
        ):
            for i in range(args.num_validation_images):
                edited_images.append(
                    pipeline(
                        args.validation_prompt,
                        image=original_image,
                        mask_img=mask_image,
                        num_inference_steps=50,
                        image_guidance_scale=1.5,
                        guidance_scale=7.5,
                        generator=generator,
                    ).images[0]
                )
        path = join(args.output_dir, f"start_test")
        os.makedirs(path, exist_ok=True)
        original_image.save(join(path, f"original.jpg"))
        for idx, edited_image in enumerate(edited_images):
            edited_image.save(join(path, f"sample_{idx}.jpg"))

        del pipeline
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
            gc.collect()

    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    print('=========num_update_steps_per_epoch==========', num_update_steps_per_epoch)
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
        accelerator.init_trackers("instruct-pix2pix_sd3", config=vars(args))

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
    global_step = 0
    first_epoch = 0

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
            initial_global_step = 0
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])
            initial_global_step = global_step
            first_epoch = global_step // num_update_steps_per_epoch
            resume_global_step = global_step * args.gradient_accumulation_steps
            resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
    else:
        initial_global_step = 0
    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(0, args.max_train_steps), initial=initial_global_step, desc="Steps",
                        disable=not accelerator.is_local_main_process)

    def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
        sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
        schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
        timesteps = timesteps.to(accelerator.device)
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < n_dim:
            sigma = sigma.unsqueeze(-1)
        return sigma

    # with torch.autograd.set_detect_anomaly(True):
    for epoch in range(first_epoch, args.num_train_epochs):
        transformer.train()
        if args.train_text_encoder:
            text_encoder_one.train()
            text_encoder_two.train()
            text_encoder_three.train()

        train_loss = 0.0
        for step, batch in enumerate(train_dataloader):
            # Skip steps until we reach the resumed step
            # if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
            #     if step % args.gradient_accumulation_steps == 0:
            #         progress_bar.update(1)
            #     continue

            models_to_accumulate = [transformer]
            if args.train_text_encoder:
                models_to_accumulate.extend([text_encoder_one, text_encoder_two, text_encoder_three])
            with accelerator.accumulate(models_to_accumulate):
                # We want to learn the denoising process w.r.t the edited images which
                # are conditioned on the original image (which was edited) and the edit instruction.
                # So, first, convert images to latent space.]
                pixel_values = batch["edited_pixel_values"].to(dtype=vae.dtype)
                prompt = batch[edit_prompt_column]

                if not args.train_text_encoder:
                    prompt_embeds, pooled_prompt_embeds = compute_text_embeddings(
                        prompt, text_encoders, tokenizers,text_encoders_dtypes
                    )
                else:
                    tokens_one = tokenize_prompt(tokenizer_one, prompt)
                    tokens_two = tokenize_prompt(tokenizer_two, prompt)
                    tokens_three = tokenize_prompt(tokenizer_three, prompt, args.max_sequence_length)

                latents = vae.encode(pixel_values).latent_dist.sample()
                latents = latents * vae.config.scaling_factor
                latents = latents.to(dtype=weight_dtype)

                # Sample noise that we'll add to the latents
                noise = torch.randn_like(latents)
                bsz = latents.shape[0]
                # Sample a random timestep for each image
                # for weighting schemes where we sample timesteps non-uniformly
                if args.weighting_scheme == "logit_normal":
                    # See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
                    u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device="cpu")
                    u = torch.nn.functional.sigmoid(u)
                elif args.weighting_scheme == "mode":
                    u = torch.rand(size=(bsz,), device="cpu")
                    u = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
                else:
                    u = torch.rand(size=(bsz,), device="cpu")

                indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
                timesteps = noise_scheduler_copy.timesteps[indices].to(device=latents.device)

                # Add noise to the latents according to the noise magnitude at each timestep
                # (this is the forward diffusion process)
                sigmas = get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
                noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents

                # Get the additional image embedding for conditioning.
                # Instead of getting a diagonal Gaussian here, we simply take the mode.
                original_image_embeds = vae.encode(batch["original_pixel_values"].to(vae.dtype)).latent_dist.mode()
                concatenated_noisy_latents = torch.cat([noisy_model_input, original_image_embeds], dim=1)

                if args.do_mask:
                    mask_embeds = vae.encode(batch["mask_pixel_values"].to(vae.dtype)).latent_dist.mode()
                    concatenated_noisy_latents = torch.cat([concatenated_noisy_latents, mask_embeds], dim=1)


                # Predict the noise residual
                if not args.train_text_encoder:
                    model_pred = transformer(
                        hidden_states=concatenated_noisy_latents,
                        timestep=timesteps,
                        encoder_hidden_states=prompt_embeds,
                        pooled_projections=pooled_prompt_embeds,
                        return_dict=False,
                        # mask_index = mask_index
                    )[0]
                else:
                    prompt_embeds, pooled_prompt_embeds = encode_prompt(
                        text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three],
                        tokenizers=[tokenizer_one, tokenizer_two, tokenizer_three],
                        prompt=prompt,
                        text_input_ids_list=[tokens_one, tokens_two, tokens_three],
                        max_sequence_length=args.max_sequence_length,
                        text_encoders_dtypes = text_encoders_dtypes
                    )

                    model_pred = transformer(
                        hidden_states=concatenated_noisy_latents,
                        timestep=timesteps,
                        encoder_hidden_states=prompt_embeds,
                        pooled_projections=pooled_prompt_embeds,
                        return_dict=False,
                        mask_index=mask_index

                    )[0]

                model_pred = model_pred * (-sigmas) + noisy_model_input
                # these weighting schemes use a uniform timestep sampling
                # and instead post-weight the loss
                if args.weighting_scheme == "sigma_sqrt":
                    weighting = (sigmas ** -2.0).float()
                elif args.weighting_scheme == "cosmap":
                    bot = 1 - 2 * sigmas + 2 * sigmas ** 2
                    weighting = 2 / (math.pi * bot)
                else:
                    weighting = torch.ones_like(sigmas)

                target = latents
                # Conditioning dropout to support classifier-free guidance during inference. For more details
                # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.

                # Concatenate the `original_image_embeds` with the `noisy_latents`.

                # Get the target for loss depending on the prediction type
                loss = torch.mean(
                    (weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
                    1,
                )
                loss = loss.mean()

                avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
                train_loss += avg_loss.item() / args.gradient_accumulation_steps
                # Backpropagate
                accelerator.backward(loss)
                if accelerator.sync_gradients:
                    params_to_clip = (
                        itertools.chain(
                            transformer.parameters(),
                            text_encoder_one.parameters(),
                            text_encoder_two.parameters(),
                            text_encoder_three.parameters(),
                        )
                        if args.train_text_encoder
                        else transformer.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)

                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1
                accelerator.log({"train_loss": train_loss}, step=global_step)
                train_loss = 0.0

                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

                if accelerator.is_main_process:
                    if (
                            (args.val_image_url is not None)
                            and (args.validation_prompt is not None)
                            and (global_step % args.validation_step == 0)
                    ):
                        logger.info(
                            f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
                            f" {args.validation_prompt}."
                        )
                        # create pipeline
                        # if not args.train_text_encoder:
                        #     text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
                        #         text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
                        #     )
                        if args.do_mask:
                            pretrained_path = args.ori_model_name_or_path
                        else:
                            pretrained_path = args.pretrained_model_name_or_path
                        pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
                            pretrained_path,
                            vae=vae,
                            text_encoder=accelerator.unwrap_model(text_encoder_one),
                            text_encoder_2=accelerator.unwrap_model(text_encoder_two),
                            text_encoder_3=accelerator.unwrap_model(text_encoder_three),
                            transformer=accelerator.unwrap_model(transformer),
                            revision=args.revision,
                            variant=args.variant,
                            torch_dtype=weight_dtype,
                        )

                        pipeline = pipeline.to(accelerator.device)
                        pipeline.set_progress_bar_config(disable=True)
                        generator = torch.Generator(device=accelerator.device).manual_seed(
                            args.seed) if args.seed else None
                        # run inference
                        if args.do_mask:
                            original_image = download_image(args.val_image_url,args.eval_resolution)
                            mask_image = download_image(args.val_mask_url,args.eval_resolution)
                        else:
                            original_image = download_image(args.val_image_url,args.eval_resolution)
                            mask_image = None

                        edited_images = []
                        with torch.autocast(
                                str(accelerator.device).replace(":0", ""),
                                enabled=(accelerator.mixed_precision == "fp16") | (
                                        accelerator.mixed_precision == "bf16")
                        ):
                            for i in range(args.num_validation_images):

                                edited_images.append(
                                    pipeline(
                                        args.validation_prompt,
                                        image=original_image,
                                        mask_img=mask_image,
                                        num_inference_steps=50,
                                        image_guidance_scale=1.5,
                                        guidance_scale=7.5,
                                        generator=generator,
                                    ).images[0]
                                )

                        for tracker in accelerator.trackers:
                            path = join(args.output_dir, f"eval_{global_step}")
                            os.makedirs(path, exist_ok=True)
                            original_image.save(join(path, f"original.jpg"))
                            if tracker.name == "wandb":
                                wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES)

                                for idx, edited_image in enumerate(edited_images):
                                    wandb_table.add_data(
                                        wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt
                                    )
                                    # save in the dir as well
                                tracker.log({"validation": wandb_table})

                            for idx, edited_image in enumerate(edited_images):
                                edited_image.save(join(path, f"sample_{idx}.jpg"))

                        del pipeline
                        if torch.cuda.is_available():
                            torch.cuda.empty_cache()
                            gc.collect()

            logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
            if global_step >= args.max_train_steps:
                break

    accelerator.wait_for_everyone()
    if accelerator.is_main_process:
        transformer = unwrap_model(transformer)

        if args.train_text_encoder:
            text_encoder_one = unwrap_model(text_encoder_one)
            text_encoder_two = unwrap_model(text_encoder_two)
            text_encoder_three = unwrap_model(text_encoder_three)
            pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
                args.pretrained_model_name_or_path,
                transformer=transformer,
                text_encoder=text_encoder_one,
                text_encoder_2=text_encoder_two,
                text_encoder_3=text_encoder_three,
            )
        else:
            pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
                args.pretrained_model_name_or_path, transformer=transformer
            )

        pipeline.save_pretrained(args.output_dir)


    accelerator.end_training()


if __name__ == "__main__":
    args = parse_args()

    main()