Spaces:
Running
on
Zero
Running
on
Zero
File size: 72,899 Bytes
87d40d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 |
import torch.nn.init as init
import argparse
from cgitb import text
import copy
import gc
import itertools
import logging
import math
import os
import random
import shutil
from tkinter import NO
import warnings
from contextlib import nullcontext
from pathlib import Path
import PIL.Image
import PIL.ImageOps
import numpy as np
from sympy import N
import torch
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
from huggingface_hub import create_repo, upload_folder
from huggingface_hub.utils import insecure_hashlib
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from torchvision.transforms.functional import crop
from tqdm.auto import tqdm
from transformers import CLIPTextModelWithProjection, CLIPTokenizer, PretrainedConfig, T5EncoderModel, T5TokenizerFast
# from transformer_sd3 import SD3Transformer2DModel
import diffusers
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler,
StableDiffusion3Pipeline,
SD3Transformer2DModel,
StableDiffusion3InstructPix2PixPipeline
)
from diffusers.optimization import get_scheduler
from diffusers.utils import (
check_min_version,
is_wandb_available,
)
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from diffusers.utils.torch_utils import is_compiled_module
import accelerate
import datasets
import PIL
import requests
import torch.nn as nn
import torch.nn.functional as F
from os.path import join
from datasets import load_dataset
from packaging import version
def load_text_encoders(class_one, class_two, class_three):
text_encoder_one = class_one.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
)
text_encoder_two = class_two.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_2", revision=args.revision, variant=args.variant
)
text_encoder_three = class_three.from_pretrained(
args.pretrained_model_name_or_path, subfolder="text_encoder_3", revision=args.revision, variant=args.variant
)
return text_encoder_one, text_encoder_two, text_encoder_three
def tokenize_prompt(tokenizer, prompt, max_sequence_length=77):
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
return text_input_ids
def _encode_prompt_with_t5(
text_encoder,
tokenizer,
max_sequence_length,
text_encoder_dtype,
prompt=None,
num_images_per_prompt=1,
device=None,
text_input_ids=None
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if text_input_ids is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds
def _encode_prompt_with_clip(
text_encoder,
tokenizer,
prompt: str,
text_encoder_dtype,
device=None,
num_images_per_prompt: int = 1,
text_input_ids=None
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
if text_input_ids is None:
text_inputs = tokenizer(
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
pooled_prompt_embeds = prompt_embeds[0]
prompt_embeds = prompt_embeds.hidden_states[-2]
prompt_embeds = prompt_embeds.to(dtype=text_encoder_dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
return prompt_embeds, pooled_prompt_embeds
def encode_prompt(
text_encoders,
tokenizers,
prompt: str,
max_sequence_length=None,
text_encoders_dtypes=[torch.float32,torch.float32,torch.float32],
device=None,
num_images_per_prompt: int = 1,
text_input_ids_list=None
):
prompt = [prompt] if isinstance(prompt, str) else prompt
clip_prompt_embeds_list = []
clip_pooled_prompt_embeds_list = []
clip_tokenizers = tokenizers[:2]
clip_text_encoders = text_encoders[:2]
clip_text_encoders_dtypes = text_encoders_dtypes[:2]
if text_input_ids_list is not None:
clip_text_input_ids_list = text_input_ids_list[:2]
else:
clip_text_input_ids_list = [None, None]
zipped_text_encoders = zip(clip_tokenizers, clip_text_encoders, clip_text_encoders_dtypes, clip_text_input_ids_list)
for tokenizer, text_encoder, clip_text_encoder_dtype, text_input_ids in zipped_text_encoders:
prompt_embeds, pooled_prompt_embeds = _encode_prompt_with_clip(
text_encoder=text_encoder,
tokenizer=tokenizer,
prompt=prompt,
text_encoder_dtype=clip_text_encoder_dtype,
device=device if device is not None else text_encoder.device,
num_images_per_prompt=num_images_per_prompt,
text_input_ids=text_input_ids,
)
clip_prompt_embeds_list.append(prompt_embeds)
clip_pooled_prompt_embeds_list.append(pooled_prompt_embeds)
clip_prompt_embeds = torch.cat(clip_prompt_embeds_list, dim=-1)
pooled_prompt_embeds = torch.cat(clip_pooled_prompt_embeds_list, dim=-1)
if text_input_ids_list is not None:
t5_text_input_ids = text_input_ids_list[-1]
else:
t5_text_input_ids = None
t5_prompt_embed = _encode_prompt_with_t5(
text_encoders[-1],
tokenizers[-1],
max_sequence_length,
clip_text_encoders_dtypes[-1],
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
device=device if device is not None else text_encoders[-1].device,
text_input_ids=t5_text_input_ids
)
clip_prompt_embeds = torch.nn.functional.pad(
clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1])
)
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
return prompt_embeds, pooled_prompt_embeds
logger = get_logger(__name__, log_level="INFO")
DATASET_NAME_MAPPING = {
"BleachNick/UltraEdit_500k": ("source_image", "edited_image", "edit_prompt"),
}
WANDB_TABLE_COL_NAMES = ["source_image", "edited_image", "edit_prompt"]
def parse_args():
parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.")
parser.add_argument(
"--pretrained_model_name_or_path",
type=str,
default=None,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
parser.add_argument(
"--revision",
type=str,
default=None,
required=False,
help="Revision of pretrained model identifier from huggingface.co/models.",
)
parser.add_argument(
"--ori_model_name_or_path",
type=str,
default=None,
help="Path to ori_model_name_or_path.",
)
parser.add_argument(
"--weighting_scheme", type=str, default="logit_normal", choices=["sigma_sqrt", "logit_normal", "mode", "cosmap"]
)
parser.add_argument(
"--logit_mean", type=float, default=0.0, help="mean to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--logit_std", type=float, default=1.0, help="std to use when using the `'logit_normal'` weighting scheme."
)
parser.add_argument(
"--mode_scale",
type=float,
default=1.29,
help="Scale of mode weighting scheme. Only effective when using the `'mode'` as the `weighting_scheme`.",
)
parser.add_argument(
"--optimizer",
type=str,
default="AdamW",
help=('The optimizer type to use. Choose between ["AdamW", "prodigy"]'),
)
parser.add_argument(
"--use_8bit_adam",
action="store_true",
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
)
parser.add_argument(
"--adam_weight_decay_text_encoder", type=float, default=1e-03, help="Weight decay to use for text_encoder"
)
parser.add_argument(
"--prodigy_beta3",
type=float,
default=None,
help="coefficients for computing the Prodidy stepsize using running averages. If set to None, "
"uses the value of square root of beta2. Ignored if optimizer is adamW",
)
parser.add_argument(
"--prodigy_use_bias_correction",
type=bool,
default=True,
help="Turn on Adam's bias correction. True by default. Ignored if optimizer is adamW",
)
parser.add_argument("--prodigy_decouple", type=bool, default=True, help="Use AdamW style decoupled weight decay")
parser.add_argument(
"--prodigy_safeguard_warmup",
type=bool,
default=True,
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage. True by default. "
"Ignored if optimizer is adamW",
)
parser.add_argument(
"--variant",
type=str,
default=None,
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
)
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help=(
"The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
" or to a folder containing files that 🤗 Datasets can understand."
),
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The config of the Dataset, leave as None if there's only one config.",
)
parser.add_argument(
"--train_data_jsonl",
type=str,
default=None,
help=(
"A folder containing the training data. Folder contents must follow the structure described in"
" https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
" must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
),
)
parser.add_argument(
"--original_image_column",
type=str,
default="source_image",
help="The column of the dataset containing the original image on which edits where made.",
)
parser.add_argument(
"--config_file",
type=str,
default=None,
)
parser.add_argument(
"--edited_image_column",
type=str,
default="edited_image",
help="The column of the dataset containing the edited image.",
)
parser.add_argument(
"--edit_prompt_column",
type=str,
default="edit_prompt",
help="The column of the dataset containing the edit instruction.",
)
parser.add_argument(
"--val_image_url",
type=str,
default=None,
help="URL to the original image that you would like to edit (used during inference for debugging purposes).",
)
parser.add_argument(
'--val_mask_url',
type=str,
default=None,
help="URL to the mask image that you would like to edit (used during inference for debugging purposes).",
)
parser.add_argument(
"--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference."
)
parser.add_argument(
"--num_validation_images",
type=int,
default=4,
help="Number of images that should be generated during validation with `validation_prompt`.",
)
parser.add_argument(
"--validation_epochs",
type=int,
default=1,
help=(
"Run fine-tuning validation every X epochs. The validation process consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--validation_step",
type=int,
default=5000,
help=(
"Run fine-tuning validation every X steps. The validation process consists of running the prompt"
" `args.validation_prompt` multiple times: `args.num_validation_images`."
),
)
parser.add_argument(
"--top_training_data_sample",
type=int,
default=None,
help="Number of top samples to use for training, ranked by clip-sim-dit. If None, use the full dataset.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--output_dir",
type=str,
default="sd3_edit",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="The directory where the downloaded models and datasets will be stored.",
)
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=256,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--eval_resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--max_sequence_length",
type=int,
default=77,
help="Maximum sequence length to use with with the T5 text encoder",
)
parser.add_argument(
"--center_crop",
default=False,
action="store_true",
help=(
"Whether to center crop the input images to the resolution. If not set, the images will be randomly"
" cropped. The images will be resized to the resolution first before cropping."
),
)
parser.add_argument(
"--random_flip",
action="store_true",
help="whether to randomly flip images horizontally",
)
parser.add_argument(
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=100)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=1e-4,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="cosine",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--conditioning_dropout_prob",
type=float,
default=None,
help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.",
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--text_encoder_lr",
type=float,
default=5e-6,
help="Text encoder learning rate to use.",
)
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
parser.add_argument(
"--hub_model_id",
type=str,
default=None,
help="The name of the repository to keep in sync with the local `output_dir`.",
)
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
" training using `--resume_from_checkpoint`."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--train_text_encoder",
action="store_true"
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--do_mask", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--mask_column",
type=str,
default="mask_image",
help="The column of the dataset containing the original image`s mask.",
)
args = parser.parse_args()
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if env_local_rank != -1 and env_local_rank != args.local_rank:
args.local_rank = env_local_rank
# Sanity checks
if args.dataset_name is None and args.train_data_jsonl is None:
raise ValueError("Need either a dataset name or a training folder.")
# default to using the same revision for the non-ema model if not specified
return args
def combine_rgb_and_mask_to_rgba(rgb_image, mask_image):
# Ensure the input images are the same size
if rgb_image.size != mask_image.size:
raise ValueError("The RGB image and the mask image must have the same dimensions")
# Convert the mask image to 'L' mode (grayscale) if it is not
if mask_image.mode != 'L':
mask_image = mask_image.convert('L')
# Split the RGB image into its three channels
r, g, b = rgb_image.split()
# Combine the RGB channels with the mask to form an RGBA image
rgba_image = Image.merge("RGBA", (r, g, b, mask_image))
return rgba_image
def convert_to_np(image, resolution):
try:
if isinstance(image, str):
if image == "NONE":
image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
else:
image = PIL.Image.open(image)
image = image.convert("RGB").resize((resolution, resolution))
return np.array(image).transpose(2, 0, 1)
except Exception as e:
print("Load error", image)
print(e)
# New blank image
image = PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
return np.array(image).transpose(2, 0, 1)
def import_model_class_from_model_name_or_path(
pretrained_model_name_or_path: str, revision: str, subfolder: str = "text_encoder"
):
text_encoder_config = PretrainedConfig.from_pretrained(
pretrained_model_name_or_path, subfolder=subfolder, revision=revision
)
model_class = text_encoder_config.architectures[0]
if model_class == "CLIPTextModelWithProjection":
from transformers import CLIPTextModelWithProjection
return CLIPTextModelWithProjection
elif model_class == "T5EncoderModel":
from transformers import T5EncoderModel
return T5EncoderModel
else:
raise ValueError(f"{model_class} is not supported.")
def main():
if args.report_to == "wandb" and args.hub_token is not None:
raise ValueError(
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
" Please use `huggingface-cli login` to authenticate with the Hub."
)
logging_dir = os.path.join(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
from accelerate import DistributedDataParallelKwargs as DDPK
kwargs = DDPK(find_unused_parameters=True)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
kwargs_handlers=[kwargs],
)
if torch.backends.mps.is_available():
accelerator.native_amp = False
def download_image(path_or_url,resolution=512):
# Check if path_or_url is a local file path
if path_or_url is None:
# return a white RBG image image
return PIL.Image.new("RGB", (resolution, resolution), (255, 255, 255))
if os.path.exists(path_or_url):
image = Image.open(path_or_url).convert("RGB").resize((resolution, resolution))
else:
image = Image.open(requests.get(path_or_url, stream=True).raw).convert("RGB")
image = PIL.ImageOps.exif_transpose(image)
return image
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
if args.report_to == "wandb":
if not is_wandb_available():
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
import wandb
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
if args.push_to_hub:
repo_id = create_repo(
repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
).repo_id
# Load scheduler, tokenizer and models.
# Load the tokenizers
tokenizer_one = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer",
revision=args.revision,
)
tokenizer_two = CLIPTokenizer.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_2",
revision=args.revision,
)
tokenizer_three = T5TokenizerFast.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="tokenizer_3",
revision=args.revision,
)
# import correct text encoder classes
text_encoder_cls_one = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision
)
text_encoder_cls_two = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_2"
)
text_encoder_cls_three = import_model_class_from_model_name_or_path(
args.pretrained_model_name_or_path, args.revision, subfolder="text_encoder_3"
)
# Load scheduler and models
noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
args.pretrained_model_name_or_path, subfolder="scheduler"
)
noise_scheduler_copy = copy.deepcopy(noise_scheduler)
text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
)
vae = AutoencoderKL.from_pretrained(
args.pretrained_model_name_or_path,
subfolder="vae",
revision=args.revision,
variant=args.variant,
)
transformer = SD3Transformer2DModel.from_pretrained(
args.pretrained_model_name_or_path, subfolder="transformer", revision=args.revision, variant=args.variant
)
# TODO
logger.info("Initializing the new channel of DIT from the pretrained DIT.")
in_channels = int(1.5 * transformer.config.in_channels) if args.do_mask else 2 * transformer.config.in_channels # 48 for mask
out_channels = transformer.pos_embed.proj.out_channels
load_num_channel = transformer.config.in_channels
print("Do mask",args.do_mask)
print("new in_channels",in_channels)
print("load_num_channel",load_num_channel)
transformer.register_to_config(in_channels=in_channels)
print("transformer.pos_embed.proj.weight.shape", transformer.pos_embed.proj.weight.shape)
print("load_num_channel", load_num_channel)
with torch.no_grad():
new_proj = nn.Conv2d(
in_channels, out_channels, kernel_size=(transformer.config.patch_size, transformer.config.patch_size),
stride=transformer.config.patch_size, bias=True
)
print("new_proj", new_proj)
new_proj.weight.zero_()
# init.kaiming_normal_(new_proj.weight, mode='fan_out', nonlinearity='relu')
# if new_proj.bias is not None and transformer.pos_embed.proj.bias is not None:
# new_proj.bias.copy_(transformer.pos_embed.proj.bias)
# else:
# if new_proj.bias is not None:
# new_proj.bias.zero_()
new_proj = new_proj.to(transformer.pos_embed.proj.weight.dtype)
new_proj.weight[:, :load_num_channel, :, :].copy_(transformer.pos_embed.proj.weight)
new_proj.bias.copy_(transformer.pos_embed.proj.bias)
print("new_proj", new_proj.weight.shape)
print("transformer.pos_embed.proj", transformer.pos_embed.proj.weight.shape)
transformer.pos_embed.proj = new_proj
for param in transformer.parameters():
param.requires_grad = True
transformer.requires_grad_(True)
vae.requires_grad_(False)
if args.train_text_encoder:
text_encoder_one.requires_grad_(True)
text_encoder_two.requires_grad_(True)
text_encoder_three.requires_grad_(True)
else:
text_encoder_one.requires_grad_(False)
text_encoder_two.requires_grad_(False)
text_encoder_three.requires_grad_(False)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
# due to pytorch#99272, MPS does not yet support bfloat16.
raise ValueError(
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
)
vae.to(accelerator.device, dtype=torch.float32)
if not args.train_text_encoder:
text_encoder_one.to(accelerator.device, dtype=weight_dtype)
text_encoder_two.to(accelerator.device, dtype=weight_dtype)
text_encoder_three.to(accelerator.device, dtype=weight_dtype)
if args.gradient_checkpointing:
transformer.enable_gradient_checkpointing()
if args.train_text_encoder:
text_encoder_one.gradient_checkpointing_enable()
text_encoder_two.gradient_checkpointing_enable()
text_encoder_three.gradient_checkpointing_enable()
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
for i, model in enumerate(models):
if isinstance(unwrap_model(model), SD3Transformer2DModel):
unwrap_model(model).save_pretrained(os.path.join(output_dir, "transformer"))
elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)):
if isinstance(unwrap_model(model), CLIPTextModelWithProjection):
hidden_size = unwrap_model(model).config.hidden_size
if hidden_size == 768:
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder"))
elif hidden_size == 1280:
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_2"))
else:
unwrap_model(model).save_pretrained(os.path.join(output_dir, "text_encoder_3"))
else:
raise ValueError(f"Wrong model supplied: {type(model)=}.")
# make sure to pop weight so that corresponding model is not saved again
weights.pop()
def load_model_hook(models, input_dir):
for _ in range(len(models)):
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
if isinstance(unwrap_model(model), SD3Transformer2DModel):
load_model = SD3Transformer2DModel.from_pretrained(input_dir, subfolder="transformer")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
elif isinstance(unwrap_model(model), (CLIPTextModelWithProjection, T5EncoderModel)):
try:
load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder")
model(**load_model.config)
model.load_state_dict(load_model.state_dict())
except Exception:
try:
load_model = CLIPTextModelWithProjection.from_pretrained(input_dir, subfolder="text_encoder_2")
model(**load_model.config)
model.load_state_dict(load_model.state_dict())
except Exception:
try:
load_model = T5EncoderModel.from_pretrained(input_dir, subfolder="text_encoder_3")
model(**load_model.config)
model.load_state_dict(load_model.state_dict())
except Exception:
raise ValueError(f"Couldn't load the model of type: ({type(model)}).")
else:
raise ValueError(f"Unsupported model found: {type(model)=}")
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
transformer_parameters_with_lr = {"params": transformer.parameters(), "lr": args.learning_rate}
if args.train_text_encoder:
# different learning rate for text encoder and unet
text_parameters_one_with_lr = {
"params": text_encoder_one.parameters(),
"weight_decay": args.adam_weight_decay_text_encoder,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
text_parameters_two_with_lr = {
"params": text_encoder_two.parameters(),
"weight_decay": args.adam_weight_decay_text_encoder,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
text_parameters_three_with_lr = {
"params": text_encoder_three.parameters(),
"weight_decay": args.adam_weight_decay_text_encoder,
"lr": args.text_encoder_lr if args.text_encoder_lr else args.learning_rate,
}
params_to_optimize = [
transformer_parameters_with_lr,
text_parameters_one_with_lr,
text_parameters_two_with_lr,
text_parameters_three_with_lr,
]
else:
params_to_optimize = [transformer_parameters_with_lr]
if not (args.optimizer.lower() == "prodigy" or args.optimizer.lower() == "adamw"):
logger.warning(
f"Unsupported choice of optimizer: {args.optimizer}.Supported optimizers include [adamW, prodigy]."
"Defaulting to adamW"
)
args.optimizer = "adamw"
# Initialize the optimizer
if args.use_8bit_adam and not args.optimizer.lower() == "adamw":
logger.warning(
f"use_8bit_adam is ignored when optimizer is not set to 'AdamW'. Optimizer was "
f"set to {args.optimizer.lower()}"
)
if args.optimizer.lower() == "adamw":
if args.use_8bit_adam:
try:
import bitsandbytes as bnb
except ImportError:
raise ImportError(
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
)
optimizer_class = bnb.optim.AdamW8bit
else:
optimizer_class = torch.optim.AdamW
optimizer = optimizer_class(
params_to_optimize,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
if args.optimizer.lower() == "prodigy":
try:
import prodigyopt
except ImportError:
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
optimizer_class = prodigyopt.Prodigy
if args.learning_rate <= 0.1:
logger.warning(
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
)
if args.train_text_encoder and args.text_encoder_lr:
logger.warning(
f"Learning rates were provided both for the transformer and the text encoder- e.g. text_encoder_lr:"
f" {args.text_encoder_lr} and learning_rate: {args.learning_rate}. "
f"When using prodigy only learning_rate is used as the initial learning rate."
)
# changes the learning rate of text_encoder_parameters_one and text_encoder_parameters_two to be
# --learning_rate
params_to_optimize[1]["lr"] = args.learning_rate
params_to_optimize[2]["lr"] = args.learning_rate
params_to_optimize[3]["lr"] = args.learning_rate
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
beta3=args.prodigy_beta3,
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
decouple=args.prodigy_decouple,
use_bias_correction=args.prodigy_use_bias_correction,
safeguard_warmup=args.prodigy_safeguard_warmup,
)
text_encoders_dtypes = [text_encoder_one.dtype, text_encoder_two.dtype, text_encoder_three.dtype]
if not args.train_text_encoder:
tokenizers = [tokenizer_one, tokenizer_two, tokenizer_three]
text_encoders = [text_encoder_one, text_encoder_two, text_encoder_three]
def compute_text_embeddings(prompt, text_encoders, tokenizers,text_encoders_dtypes):
with torch.no_grad():
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders, tokenizers, prompt, args.max_sequence_length, text_encoders_dtypes
)
prompt_embeds = prompt_embeds.to(accelerator.device)
pooled_prompt_embeds = pooled_prompt_embeds.to(accelerator.device)
return prompt_embeds, pooled_prompt_embeds
# Get the datasets: you can either provide your own training and evaluation files (see below)
# or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
dataset = load_dataset(
args.dataset_name,
args.dataset_config_name,
cache_dir=args.cache_dir,
)
else:
if args.train_data_jsonl is not None:
dataset = load_dataset(
"json",
data_files=args.train_data_jsonl,
cache_dir=args.cache_dir,
# split="train"
)
# See more about loading custom images at
# https://huggingface.co/docs/datasets/main/en/image_load#imagefolder
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
column_names = dataset["train"].column_names
# 6. Get the column names for input/target.
dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None)
if args.original_image_column is None:
original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
original_image_column = args.original_image_column
if original_image_column not in column_names:
raise ValueError(
f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}"
)
if args.edit_prompt_column is None:
edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
edit_prompt_column = args.edit_prompt_column
if edit_prompt_column not in column_names:
raise ValueError(
f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}"
)
if args.edited_image_column is None:
edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2]
else:
edited_image_column = args.edited_image_column
if edited_image_column not in column_names:
raise ValueError(
f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}"
)
# Preprocessing the datasets.
# We need to tokenize input captions and transform the images.
# def tokenize_captions(captions):
# inputs = tokenizer(
# captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
# )
# return inputs.input_ids
# Preprocessing the datasets.
train_transforms = transforms.Compose(
[
transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution),
transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x),
]
)
def preprocess_images(examples):
original_images = np.concatenate(
[convert_to_np(image, args.resolution) for image in examples[original_image_column]]
)
edited_images = np.concatenate(
[convert_to_np(image, args.resolution) for image in examples[edited_image_column]]
)
if args.do_mask:
mask_images = np.concatenate(
[convert_to_np(image, args.resolution) for image in examples[args.mask_column]]
)
# We need to ensure that the original and the edited images undergo the same
# augmentation transforms.
images = np.concatenate([original_images, edited_images, mask_images])
images = torch.tensor(images)
images = 2 * (images / 255) - 1
# mask_index = torch.tensor([image == "NONE" for image in examples[args.mask_column]],dtype=torch.bool)
# return train_transforms(images),mask_index
return train_transforms(images)
# We need to ensure that the original and the edited images undergo the same
# augmentation transforms.
images = np.concatenate([original_images, edited_images])
images = torch.tensor(images)
images = 2 * (images / 255) - 1
return train_transforms(images)
def preprocess_train(examples):
# Preprocess images.
# Since the original and edited images were concatenated before
# applying the transformations, we need to separate them and reshape
# them accordingly.
preprocessed_images = preprocess_images(examples)
if not args.do_mask:
# preprocessed_images = preprocess_images(examples)
original_images, edited_images = preprocessed_images.chunk(2)
else:
# preprocessed_images = preprocess_images(examples)
# preprocessed_images,mask_index = preprocess_images(examples)
original_images, edited_images, mask_images = preprocessed_images.chunk(3)
mask_images = mask_images.reshape(-1, 3, args.resolution, args.resolution)
# examples["mask_index"] = mask_index
examples["mask_pixel_values"] = mask_images
original_images = original_images.reshape(-1, 3, args.resolution, args.resolution)
edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution)
examples["original_pixel_values"] = original_images
examples["edited_pixel_values"] = edited_images
# Preprocess the captions.
# captions = list(examples[edit_prompt_column])
# examples[edit_prompt_column] = captions
return examples
with accelerator.main_process_first():
if args.top_training_data_sample is not None:
dataset["train"] = dataset["train"].select(range(args.top_training_data_sample)).shuffle(seed=args.seed)
if args.max_train_samples is not None:
dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
train_dataset = dataset["train"].with_transform(preprocess_train)
def collate_fn(examples):
original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples])
original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float()
edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples])
edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float()
prompts = [example[edit_prompt_column] for example in examples]
if args.do_mask:
mask_pixel_values = torch.stack([example["mask_pixel_values"] for example in examples])
mask_pixel_values = mask_pixel_values.to(memory_format=torch.contiguous_format).float()
return {
"original_pixel_values": original_pixel_values,
"edited_pixel_values": edited_pixel_values,
edit_prompt_column: prompts,
"mask_pixel_values": mask_pixel_values,
}
else:
return {
"original_pixel_values": original_pixel_values,
"edited_pixel_values": edited_pixel_values,
edit_prompt_column: prompts,
}
# DataLoaders creation:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
if args.train_text_encoder:
(
transformer,
text_encoder_one,
text_encoder_two,
text_encoder_three,
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
transformer,
text_encoder_one,
text_encoder_two,
text_encoder_three,
optimizer,
train_dataloader,
lr_scheduler,
)
else:
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
transformer, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
if accelerator.is_main_process:
pretrained_path = args.pretrained_model_name_or_path
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
pretrained_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
text_encoder_3=accelerator.unwrap_model(text_encoder_three),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(
args.seed) if args.seed else None
if args.do_mask:
original_image = download_image(args.val_image_url, args.eval_resolution)
mask_image = download_image(args.val_mask_url, args.eval_resolution)
else:
original_image = download_image(args.val_image_url, args.eval_resolution)
mask_image = None
edited_images = []
with torch.autocast(
str(accelerator.device).replace(":0", ""),
enabled=(accelerator.mixed_precision == "fp16") | (
accelerator.mixed_precision == "bf16")
):
for i in range(args.num_validation_images):
edited_images.append(
pipeline(
args.validation_prompt,
image=original_image,
mask_img=mask_image,
num_inference_steps=50,
image_guidance_scale=1.5,
guidance_scale=7.5,
generator=generator,
).images[0]
)
path = join(args.output_dir, f"start_test")
os.makedirs(path, exist_ok=True)
original_image.save(join(path, f"original.jpg"))
for idx, edited_image in enumerate(edited_images):
edited_image.save(join(path, f"sample_{idx}.jpg"))
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
print('=========num_update_steps_per_epoch==========', num_update_steps_per_epoch)
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("instruct-pix2pix_sd3", config=vars(args))
# Train!
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
resume_global_step = global_step * args.gradient_accumulation_steps
resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps)
else:
initial_global_step = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(0, args.max_train_steps), initial=initial_global_step, desc="Steps",
disable=not accelerator.is_local_main_process)
def get_sigmas(timesteps, n_dim=4, dtype=torch.float32):
sigmas = noise_scheduler_copy.sigmas.to(device=accelerator.device, dtype=dtype)
schedule_timesteps = noise_scheduler_copy.timesteps.to(accelerator.device)
timesteps = timesteps.to(accelerator.device)
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
sigma = sigmas[step_indices].flatten()
while len(sigma.shape) < n_dim:
sigma = sigma.unsqueeze(-1)
return sigma
# with torch.autograd.set_detect_anomaly(True):
for epoch in range(first_epoch, args.num_train_epochs):
transformer.train()
if args.train_text_encoder:
text_encoder_one.train()
text_encoder_two.train()
text_encoder_three.train()
train_loss = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
# if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
# if step % args.gradient_accumulation_steps == 0:
# progress_bar.update(1)
# continue
models_to_accumulate = [transformer]
if args.train_text_encoder:
models_to_accumulate.extend([text_encoder_one, text_encoder_two, text_encoder_three])
with accelerator.accumulate(models_to_accumulate):
# We want to learn the denoising process w.r.t the edited images which
# are conditioned on the original image (which was edited) and the edit instruction.
# So, first, convert images to latent space.]
pixel_values = batch["edited_pixel_values"].to(dtype=vae.dtype)
prompt = batch[edit_prompt_column]
if not args.train_text_encoder:
prompt_embeds, pooled_prompt_embeds = compute_text_embeddings(
prompt, text_encoders, tokenizers,text_encoders_dtypes
)
else:
tokens_one = tokenize_prompt(tokenizer_one, prompt)
tokens_two = tokenize_prompt(tokenizer_two, prompt)
tokens_three = tokenize_prompt(tokenizer_three, prompt, args.max_sequence_length)
latents = vae.encode(pixel_values).latent_dist.sample()
latents = latents * vae.config.scaling_factor
latents = latents.to(dtype=weight_dtype)
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
# for weighting schemes where we sample timesteps non-uniformly
if args.weighting_scheme == "logit_normal":
# See 3.1 in the SD3 paper ($rf/lognorm(0.00,1.00)$).
u = torch.normal(mean=args.logit_mean, std=args.logit_std, size=(bsz,), device="cpu")
u = torch.nn.functional.sigmoid(u)
elif args.weighting_scheme == "mode":
u = torch.rand(size=(bsz,), device="cpu")
u = 1 - u - args.mode_scale * (torch.cos(math.pi * u / 2) ** 2 - 1 + u)
else:
u = torch.rand(size=(bsz,), device="cpu")
indices = (u * noise_scheduler_copy.config.num_train_timesteps).long()
timesteps = noise_scheduler_copy.timesteps[indices].to(device=latents.device)
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
sigmas = get_sigmas(timesteps, n_dim=latents.ndim, dtype=latents.dtype)
noisy_model_input = sigmas * noise + (1.0 - sigmas) * latents
# Get the additional image embedding for conditioning.
# Instead of getting a diagonal Gaussian here, we simply take the mode.
original_image_embeds = vae.encode(batch["original_pixel_values"].to(vae.dtype)).latent_dist.mode()
concatenated_noisy_latents = torch.cat([noisy_model_input, original_image_embeds], dim=1)
if args.do_mask:
mask_embeds = vae.encode(batch["mask_pixel_values"].to(vae.dtype)).latent_dist.mode()
concatenated_noisy_latents = torch.cat([concatenated_noisy_latents, mask_embeds], dim=1)
# Predict the noise residual
if not args.train_text_encoder:
model_pred = transformer(
hidden_states=concatenated_noisy_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
return_dict=False,
# mask_index = mask_index
)[0]
else:
prompt_embeds, pooled_prompt_embeds = encode_prompt(
text_encoders=[text_encoder_one, text_encoder_two, text_encoder_three],
tokenizers=[tokenizer_one, tokenizer_two, tokenizer_three],
prompt=prompt,
text_input_ids_list=[tokens_one, tokens_two, tokens_three],
max_sequence_length=args.max_sequence_length,
text_encoders_dtypes = text_encoders_dtypes
)
model_pred = transformer(
hidden_states=concatenated_noisy_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
return_dict=False,
mask_index=mask_index
)[0]
model_pred = model_pred * (-sigmas) + noisy_model_input
# these weighting schemes use a uniform timestep sampling
# and instead post-weight the loss
if args.weighting_scheme == "sigma_sqrt":
weighting = (sigmas ** -2.0).float()
elif args.weighting_scheme == "cosmap":
bot = 1 - 2 * sigmas + 2 * sigmas ** 2
weighting = 2 / (math.pi * bot)
else:
weighting = torch.ones_like(sigmas)
target = latents
# Conditioning dropout to support classifier-free guidance during inference. For more details
# check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800.
# Concatenate the `original_image_embeds` with the `noisy_latents`.
# Get the target for loss depending on the prediction type
loss = torch.mean(
(weighting.float() * (model_pred.float() - target.float()) ** 2).reshape(target.shape[0], -1),
1,
)
loss = loss.mean()
avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean()
train_loss += avg_loss.item() / args.gradient_accumulation_steps
# Backpropagate
accelerator.backward(loss)
if accelerator.sync_gradients:
params_to_clip = (
itertools.chain(
transformer.parameters(),
text_encoder_one.parameters(),
text_encoder_two.parameters(),
text_encoder_three.parameters(),
)
if args.train_text_encoder
else transformer.parameters()
)
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss}, step=global_step)
train_loss = 0.0
if accelerator.is_main_process:
if global_step % args.checkpointing_steps == 0:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
if accelerator.is_main_process:
if (
(args.val_image_url is not None)
and (args.validation_prompt is not None)
and (global_step % args.validation_step == 0)
):
logger.info(
f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
f" {args.validation_prompt}."
)
# create pipeline
# if not args.train_text_encoder:
# text_encoder_one, text_encoder_two, text_encoder_three = load_text_encoders(
# text_encoder_cls_one, text_encoder_cls_two, text_encoder_cls_three
# )
if args.do_mask:
pretrained_path = args.ori_model_name_or_path
else:
pretrained_path = args.pretrained_model_name_or_path
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
pretrained_path,
vae=vae,
text_encoder=accelerator.unwrap_model(text_encoder_one),
text_encoder_2=accelerator.unwrap_model(text_encoder_two),
text_encoder_3=accelerator.unwrap_model(text_encoder_three),
transformer=accelerator.unwrap_model(transformer),
revision=args.revision,
variant=args.variant,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=True)
generator = torch.Generator(device=accelerator.device).manual_seed(
args.seed) if args.seed else None
# run inference
if args.do_mask:
original_image = download_image(args.val_image_url,args.eval_resolution)
mask_image = download_image(args.val_mask_url,args.eval_resolution)
else:
original_image = download_image(args.val_image_url,args.eval_resolution)
mask_image = None
edited_images = []
with torch.autocast(
str(accelerator.device).replace(":0", ""),
enabled=(accelerator.mixed_precision == "fp16") | (
accelerator.mixed_precision == "bf16")
):
for i in range(args.num_validation_images):
edited_images.append(
pipeline(
args.validation_prompt,
image=original_image,
mask_img=mask_image,
num_inference_steps=50,
image_guidance_scale=1.5,
guidance_scale=7.5,
generator=generator,
).images[0]
)
for tracker in accelerator.trackers:
path = join(args.output_dir, f"eval_{global_step}")
os.makedirs(path, exist_ok=True)
original_image.save(join(path, f"original.jpg"))
if tracker.name == "wandb":
wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES)
for idx, edited_image in enumerate(edited_images):
wandb_table.add_data(
wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt
)
# save in the dir as well
tracker.log({"validation": wandb_table})
for idx, edited_image in enumerate(edited_images):
edited_image.save(join(path, f"sample_{idx}.jpg"))
del pipeline
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
accelerator.wait_for_everyone()
if accelerator.is_main_process:
transformer = unwrap_model(transformer)
if args.train_text_encoder:
text_encoder_one = unwrap_model(text_encoder_one)
text_encoder_two = unwrap_model(text_encoder_two)
text_encoder_three = unwrap_model(text_encoder_three)
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
args.pretrained_model_name_or_path,
transformer=transformer,
text_encoder=text_encoder_one,
text_encoder_2=text_encoder_two,
text_encoder_3=text_encoder_three,
)
else:
pipeline = StableDiffusion3InstructPix2PixPipeline.from_pretrained(
args.pretrained_model_name_or_path, transformer=transformer
)
pipeline.save_pretrained(args.output_dir)
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main()
|