Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import gc | |
import tempfile | |
import unittest | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import ( | |
AutoencoderKL, | |
DDIMScheduler, | |
PixArtSigmaPipeline, | |
PixArtTransformer2DModel, | |
) | |
from diffusers.utils.testing_utils import ( | |
enable_full_determinism, | |
numpy_cosine_similarity_distance, | |
require_torch_gpu, | |
slow, | |
torch_device, | |
) | |
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS | |
from ..test_pipelines_common import PipelineTesterMixin, to_np | |
enable_full_determinism() | |
class PixArtSigmaPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = PixArtSigmaPipeline | |
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"} | |
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | |
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS | |
required_optional_params = PipelineTesterMixin.required_optional_params | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
transformer = PixArtTransformer2DModel( | |
sample_size=8, | |
num_layers=2, | |
patch_size=2, | |
attention_head_dim=8, | |
num_attention_heads=3, | |
caption_channels=32, | |
in_channels=4, | |
cross_attention_dim=24, | |
out_channels=8, | |
attention_bias=True, | |
activation_fn="gelu-approximate", | |
num_embeds_ada_norm=1000, | |
norm_type="ada_norm_single", | |
norm_elementwise_affine=False, | |
norm_eps=1e-6, | |
) | |
torch.manual_seed(0) | |
vae = AutoencoderKL() | |
scheduler = DDIMScheduler() | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
components = { | |
"transformer": transformer.eval(), | |
"vae": vae.eval(), | |
"scheduler": scheduler, | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "A painting of a squirrel eating a burger", | |
"generator": generator, | |
"num_inference_steps": 2, | |
"guidance_scale": 5.0, | |
"use_resolution_binning": False, | |
"output_type": "np", | |
} | |
return inputs | |
def test_sequential_cpu_offload_forward_pass(self): | |
# TODO(PVP, Sayak) need to fix later | |
return | |
def test_save_load_optional_components(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs["prompt"] | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
( | |
prompt_embeds, | |
prompt_attention_mask, | |
negative_prompt_embeds, | |
negative_prompt_attention_mask, | |
) = pipe.encode_prompt(prompt) | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attention_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": negative_prompt_attention_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"use_resolution_binning": False, | |
} | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_inference(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 8, 8, 3)) | |
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_inference_non_square_images(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
image = pipe(**inputs, height=32, width=48).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (1, 32, 48, 3)) | |
expected_slice = np.array([0.6493, 0.5370, 0.4081, 0.4762, 0.3695, 0.4711, 0.3026, 0.5218, 0.5263]) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_inference_with_embeddings_and_multiple_images(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs["prompt"] | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
prompt_embeds, prompt_attn_mask, negative_prompt_embeds, neg_prompt_attn_mask = pipe.encode_prompt(prompt) | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attn_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": neg_prompt_attn_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"num_images_per_prompt": 2, | |
"use_resolution_binning": False, | |
} | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"prompt_attention_mask": prompt_attn_mask, | |
"negative_prompt": None, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"negative_prompt_attention_mask": neg_prompt_attn_mask, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
"num_images_per_prompt": 2, | |
"use_resolution_binning": False, | |
} | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
def test_inference_with_multiple_images_per_prompt(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(device) | |
inputs["num_images_per_prompt"] = 2 | |
image = pipe(**inputs).images | |
image_slice = image[0, -3:, -3:, -1] | |
self.assertEqual(image.shape, (2, 8, 8, 3)) | |
expected_slice = np.array([0.6319, 0.3526, 0.3806, 0.6327, 0.4639, 0.4830, 0.2583, 0.5331, 0.4852]) | |
max_diff = np.abs(image_slice.flatten() - expected_slice).max() | |
self.assertLessEqual(max_diff, 1e-3) | |
def test_inference_batch_single_identical(self): | |
self._test_inference_batch_single_identical(expected_max_diff=1e-3) | |
class PixArtSigmaPipelineIntegrationTests(unittest.TestCase): | |
ckpt_id_1024 = "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS" | |
ckpt_id_512 = "PixArt-alpha/PixArt-Sigma-XL-2-512-MS" | |
prompt = "A small cactus with a happy face in the Sahara desert." | |
def setUp(self): | |
super().setUp() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def tearDown(self): | |
super().tearDown() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def test_pixart_1024(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.4517, 0.4446, 0.4375, 0.449, 0.4399, 0.4365, 0.4583, 0.4629, 0.4473]) | |
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) | |
self.assertLessEqual(max_diff, 1e-4) | |
def test_pixart_512(self): | |
generator = torch.Generator("cpu").manual_seed(0) | |
transformer = PixArtTransformer2DModel.from_pretrained( | |
self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16 | |
) | |
pipe = PixArtSigmaPipeline.from_pretrained( | |
self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
image = pipe(prompt, generator=generator, num_inference_steps=2, output_type="np").images | |
image_slice = image[0, -3:, -3:, -1] | |
expected_slice = np.array([0.0479, 0.0378, 0.0217, 0.0942, 0.064, 0.0791, 0.2073, 0.1975, 0.2017]) | |
max_diff = numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice) | |
self.assertLessEqual(max_diff, 1e-4) | |
def test_pixart_1024_without_resolution_binning(self): | |
generator = torch.manual_seed(0) | |
pipe = PixArtSigmaPipeline.from_pretrained(self.ckpt_id_1024, torch_dtype=torch.float16) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
height, width = 1024, 768 | |
num_inference_steps = 2 | |
image = pipe( | |
prompt, | |
height=height, | |
width=width, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
).images | |
image_slice = image[0, -3:, -3:, -1] | |
generator = torch.manual_seed(0) | |
no_res_bin_image = pipe( | |
prompt, | |
height=height, | |
width=width, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
use_resolution_binning=False, | |
).images | |
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] | |
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) | |
def test_pixart_512_without_resolution_binning(self): | |
generator = torch.manual_seed(0) | |
transformer = PixArtTransformer2DModel.from_pretrained( | |
self.ckpt_id_512, subfolder="transformer", torch_dtype=torch.float16 | |
) | |
pipe = PixArtSigmaPipeline.from_pretrained( | |
self.ckpt_id_1024, transformer=transformer, torch_dtype=torch.float16 | |
) | |
pipe.enable_model_cpu_offload() | |
prompt = self.prompt | |
height, width = 512, 768 | |
num_inference_steps = 2 | |
image = pipe( | |
prompt, | |
height=height, | |
width=width, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
).images | |
image_slice = image[0, -3:, -3:, -1] | |
generator = torch.manual_seed(0) | |
no_res_bin_image = pipe( | |
prompt, | |
height=height, | |
width=width, | |
generator=generator, | |
num_inference_steps=num_inference_steps, | |
output_type="np", | |
use_resolution_binning=False, | |
).images | |
no_res_bin_image_slice = no_res_bin_image[0, -3:, -3:, -1] | |
assert not np.allclose(image_slice, no_res_bin_image_slice, atol=1e-4, rtol=1e-4) | |