Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import random | |
import torch | |
import torchvision.transforms as transforms | |
from PIL import Image | |
def recalculate_box_and_verify_if_valid(x, y, w, h, image_size, original_image_size, min_box_size): | |
scale = image_size / min(original_image_size) | |
crop_y = (original_image_size[1] * scale - image_size) // 2 | |
crop_x = (original_image_size[0] * scale - image_size) // 2 | |
x0 = max(x * scale - crop_x, 0) | |
y0 = max(y * scale - crop_y, 0) | |
x1 = min((x + w) * scale - crop_x, image_size) | |
y1 = min((y + h) * scale - crop_y, image_size) | |
if (x1 - x0) * (y1 - y0) / (image_size * image_size) < min_box_size: | |
return False, (None, None, None, None) | |
return True, (x0, y0, x1, y1) | |
class COCODataset(torch.utils.data.Dataset): | |
def __init__( | |
self, | |
data_path, | |
image_path, | |
image_size=512, | |
min_box_size=0.01, | |
max_boxes_per_data=8, | |
tokenizer=None, | |
): | |
super().__init__() | |
self.min_box_size = min_box_size | |
self.max_boxes_per_data = max_boxes_per_data | |
self.image_size = image_size | |
self.image_path = image_path | |
self.tokenizer = tokenizer | |
self.transforms = transforms.Compose( | |
[ | |
transforms.Resize(image_size, interpolation=transforms.InterpolationMode.BILINEAR), | |
transforms.CenterCrop(image_size), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
self.data_list = torch.load(data_path, map_location="cpu") | |
def __getitem__(self, index): | |
if self.max_boxes_per_data > 99: | |
assert False, "Are you sure setting such large number of boxes per image?" | |
out = {} | |
data = self.data_list[index] | |
image = Image.open(os.path.join(self.image_path, data["file_path"])).convert("RGB") | |
original_image_size = image.size | |
out["pixel_values"] = self.transforms(image) | |
annos = data["annos"] | |
areas, valid_annos = [], [] | |
for anno in annos: | |
# x, y, w, h = anno['bbox'] | |
x0, y0, x1, y1 = anno["bbox"] | |
x, y, w, h = x0, y0, x1 - x0, y1 - y0 | |
valid, (x0, y0, x1, y1) = recalculate_box_and_verify_if_valid( | |
x, y, w, h, self.image_size, original_image_size, self.min_box_size | |
) | |
if valid: | |
anno["bbox"] = [x0, y0, x1, y1] | |
areas.append((x1 - x0) * (y1 - y0)) | |
valid_annos.append(anno) | |
# Sort according to area and choose the largest N objects | |
wanted_idxs = torch.tensor(areas).sort(descending=True)[1] | |
wanted_idxs = wanted_idxs[: self.max_boxes_per_data] | |
valid_annos = [valid_annos[i] for i in wanted_idxs] | |
out["boxes"] = torch.zeros(self.max_boxes_per_data, 4) | |
out["masks"] = torch.zeros(self.max_boxes_per_data) | |
out["text_embeddings_before_projection"] = torch.zeros(self.max_boxes_per_data, 768) | |
for i, anno in enumerate(valid_annos): | |
out["boxes"][i] = torch.tensor(anno["bbox"]) / self.image_size | |
out["masks"][i] = 1 | |
out["text_embeddings_before_projection"][i] = anno["text_embeddings_before_projection"] | |
prob_drop_boxes = 0.1 | |
if random.random() < prob_drop_boxes: | |
out["masks"][:] = 0 | |
caption = random.choice(data["captions"]) | |
prob_drop_captions = 0.5 | |
if random.random() < prob_drop_captions: | |
caption = "" | |
caption = self.tokenizer( | |
caption, | |
max_length=self.tokenizer.model_max_length, | |
padding="max_length", | |
truncation=True, | |
return_tensors="pt", | |
) | |
out["caption"] = caption | |
return out | |
def __len__(self): | |
return len(self.data_list) | |