BleachNick's picture
upload required packages
87d40d2
# from accelerate.utils import write_basic_config
#
# write_basic_config()
import argparse
import logging
import math
import os
import shutil
from pathlib import Path
import accelerate
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
import transformers
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from packaging import version
from tqdm.auto import tqdm
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
EulerDiscreteScheduler,
StableDiffusionGLIGENPipeline,
UNet2DConditionModel,
)
from diffusers.optimization import get_scheduler
from diffusers.utils import is_wandb_available, make_image_grid
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.torch_utils import is_compiled_module
if is_wandb_available():
pass
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
# check_min_version("0.28.0.dev0")
logger = get_logger(__name__)
@torch.no_grad()
def log_validation(vae, text_encoder, tokenizer, unet, noise_scheduler, args, accelerator, step, weight_dtype):
if accelerator.is_main_process:
print("generate test images...")
unet = accelerator.unwrap_model(unet)
vae.to(accelerator.device, dtype=torch.float32)
pipeline = StableDiffusionGLIGENPipeline(
vae,
text_encoder,
tokenizer,
unet,
EulerDiscreteScheduler.from_config(noise_scheduler.config),
safety_checker=None,
feature_extractor=None,
)
pipeline = pipeline.to(accelerator.device)
pipeline.set_progress_bar_config(disable=not accelerator.is_main_process)
if args.enable_xformers_memory_efficient_attention:
pipeline.enable_xformers_memory_efficient_attention()
if args.seed is None:
generator = None
else:
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed)
prompt = "A realistic image of landscape scene depicting a green car parking on the left of a blue truck, with a red air balloon and a bird in the sky"
boxes = [
[0.041015625, 0.548828125, 0.453125, 0.859375],
[0.525390625, 0.552734375, 0.93359375, 0.865234375],
[0.12890625, 0.015625, 0.412109375, 0.279296875],
[0.578125, 0.08203125, 0.857421875, 0.27734375],
]
gligen_phrases = ["a green car", "a blue truck", "a red air balloon", "a bird"]
images = pipeline(
prompt=prompt,
gligen_phrases=gligen_phrases,
gligen_boxes=boxes,
gligen_scheduled_sampling_beta=1.0,
output_type="pil",
num_inference_steps=50,
negative_prompt="artifacts, blurry, smooth texture, bad quality, distortions, unrealistic, distorted image, bad proportions, duplicate",
num_images_per_prompt=4,
generator=generator,
).images
os.makedirs(os.path.join(args.output_dir, "images"), exist_ok=True)
make_image_grid(images, 1, 4).save(
os.path.join(args.output_dir, "images", f"generated-images-{step:06d}-{accelerator.process_index:02d}.png")
)
vae.to(accelerator.device, dtype=weight_dtype)
def parse_args(input_args=None):
parser = argparse.ArgumentParser(description="Simple example of a ControlNet training script.")
parser.add_argument(
"--data_path",
type=str,
default="coco_train2017.pth",
help="Path to training dataset.",
)
parser.add_argument(
"--image_path",
type=str,
default="coco_train2017.pth",
help="Path to training images.",
)
parser.add_argument(
"--output_dir",
type=str,
default="controlnet-model",
help="The output directory where the model predictions and checkpoints will be written.",
)
parser.add_argument("--seed", type=int, default=0, help="A seed for reproducible training.")
parser.add_argument(
"--resolution",
type=int,
default=512,
help=(
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
" resolution"
),
)
parser.add_argument(
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
)
parser.add_argument("--num_train_epochs", type=int, default=1)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--checkpointing_steps",
type=int,
default=500,
help=(
"Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
"In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
"Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
"See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
"instructions."
),
)
parser.add_argument(
"--checkpoints_total_limit",
type=int,
default=None,
help=("Max number of checkpoints to store."),
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help=(
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
),
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--gradient_checkpointing",
action="store_true",
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-6,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--scale_lr",
action="store_true",
default=False,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
parser.add_argument(
"--lr_scheduler",
type=str,
default="constant",
help=(
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
' "constant", "constant_with_warmup"]'
),
)
parser.add_argument(
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--lr_num_cycles",
type=int,
default=1,
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
)
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
parser.add_argument(
"--dataloader_num_workers",
type=int,
default=0,
help=(
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
),
)
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
parser.add_argument(
"--logging_dir",
type=str,
default="logs",
help=(
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
),
)
parser.add_argument(
"--allow_tf32",
action="store_true",
help=(
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
),
)
parser.add_argument(
"--report_to",
type=str,
default="tensorboard",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--mixed_precision",
type=str,
default=None,
choices=["no", "fp16", "bf16"],
help=(
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
),
)
parser.add_argument(
"--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
)
parser.add_argument(
"--set_grads_to_none",
action="store_true",
help=(
"Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
" behaviors, so disable this argument if it causes any problems. More info:"
" https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="train_controlnet",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co/docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
args = parser.parse_args()
return args
def main(args):
logging_dir = Path(args.output_dir, args.logging_dir)
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
mixed_precision=args.mixed_precision,
log_with=args.report_to,
project_config=accelerator_project_config,
)
# Disable AMP for MPS.
if torch.backends.mps.is_available():
accelerator.native_amp = False
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
# import correct text encoder class
# text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
# Load scheduler and models
from transformers import CLIPTextModel, CLIPTokenizer
pretrained_model_name_or_path = "masterful/gligen-1-4-generation-text-box"
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="tokenizer")
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_name_or_path, subfolder="scheduler")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_name_or_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_name_or_path, subfolder="vae")
unet = UNet2DConditionModel.from_pretrained(pretrained_model_name_or_path, subfolder="unet")
# Taken from [Sayak Paul's Diffusers PR #6511](https://github.com/huggingface/diffusers/pull/6511/files)
def unwrap_model(model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
# `accelerate` 0.16.0 will have better support for customized saving
if version.parse(accelerate.__version__) >= version.parse("0.16.0"):
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
def save_model_hook(models, weights, output_dir):
if accelerator.is_main_process:
i = len(weights) - 1
while len(weights) > 0:
weights.pop()
model = models[i]
sub_dir = "unet"
model.save_pretrained(os.path.join(output_dir, sub_dir))
i -= 1
def load_model_hook(models, input_dir):
while len(models) > 0:
# pop models so that they are not loaded again
model = models.pop()
# load diffusers style into model
load_model = unet.from_pretrained(input_dir, subfolder="unet")
model.register_to_config(**load_model.config)
model.load_state_dict(load_model.state_dict())
del load_model
accelerator.register_save_state_pre_hook(save_model_hook)
accelerator.register_load_state_pre_hook(load_model_hook)
vae.requires_grad_(False)
unet.requires_grad_(False)
text_encoder.requires_grad_(False)
if args.enable_xformers_memory_efficient_attention:
if is_xformers_available():
import xformers
xformers_version = version.parse(xformers.__version__)
if xformers_version == version.parse("0.0.16"):
logger.warning(
"xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
)
unet.enable_xformers_memory_efficient_attention()
# controlnet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# if args.gradient_checkpointing:
# controlnet.enable_gradient_checkpointing()
# Check that all trainable models are in full precision
low_precision_error_string = (
" Please make sure to always have all model weights in full float32 precision when starting training - even if"
" doing mixed precision training, copy of the weights should still be float32."
)
if unwrap_model(unet).dtype != torch.float32:
raise ValueError(f"Controlnet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}")
# Enable TF32 for faster training on Ampere GPUs,
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
if args.allow_tf32:
torch.backends.cuda.matmul.allow_tf32 = True
if args.scale_lr:
args.learning_rate = (
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
)
optimizer_class = torch.optim.AdamW
# Optimizer creation
for n, m in unet.named_modules():
if ("fuser" in n) or ("position_net" in n):
import torch.nn as nn
if isinstance(m, (nn.Linear, nn.LayerNorm)):
m.reset_parameters()
params_to_optimize = []
for n, p in unet.named_parameters():
if ("fuser" in n) or ("position_net" in n):
p.requires_grad = True
params_to_optimize.append(p)
optimizer = optimizer_class(
params_to_optimize,
lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
from dataset import COCODataset
train_dataset = COCODataset(
data_path=args.data_path,
image_path=args.image_path,
tokenizer=tokenizer,
image_size=args.resolution,
max_boxes_per_data=30,
)
print("num samples: ", len(train_dataset))
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
shuffle=True,
# collate_fn=collate_fn,
batch_size=args.train_batch_size,
num_workers=args.dataloader_num_workers,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
args.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps * accelerator.num_processes,
num_cycles=args.lr_num_cycles,
power=args.lr_power,
)
# Prepare everything with our `accelerator`.
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
unet, optimizer, train_dataloader, lr_scheduler
)
# For mixed precision training we cast the text_encoder and vae weights to half-precision
# as these models are only used for inference, keeping weights in full precision is not required.
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
# Move vae, unet and text_encoder to device and cast to weight_dtype
vae.to(accelerator.device, dtype=weight_dtype)
# unet.to(accelerator.device, dtype=weight_dtype)
unet.to(accelerator.device, dtype=torch.float32)
text_encoder.to(accelerator.device, dtype=weight_dtype)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
tracker_config = dict(vars(args))
# tensorboard cannot handle list types for config
# tracker_config.pop("validation_prompt")
# tracker_config.pop("validation_image")
accelerator.init_trackers(args.tracker_project_name, config=tracker_config)
# Train!
# total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
# logger.info("***** Running training *****")
# logger.info(f" Num examples = {len(train_dataset)}")
# logger.info(f" Num batches each epoch = {len(train_dataloader)}")
# logger.info(f" Num Epochs = {args.num_train_epochs}")
# logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
# logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
# logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
# logger.info(f" Total optimization steps = {args.max_train_steps}")
global_step = 0
first_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint != "latest":
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = os.listdir(args.output_dir)
dirs = [d for d in dirs if d.startswith("checkpoint")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
path = dirs[-1] if len(dirs) > 0 else None
if path is None:
accelerator.print(
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
)
args.resume_from_checkpoint = None
initial_global_step = 0
else:
accelerator.print(f"Resuming from checkpoint {path}")
accelerator.load_state(os.path.join(args.output_dir, path))
global_step = int(path.split("-")[1])
initial_global_step = global_step
first_epoch = global_step // num_update_steps_per_epoch
else:
initial_global_step = 0
progress_bar = tqdm(
range(0, args.max_train_steps),
initial=initial_global_step,
desc="Steps",
# Only show the progress bar once on each machine.
disable=not accelerator.is_local_main_process,
)
log_validation(
vae,
text_encoder,
tokenizer,
unet,
noise_scheduler,
args,
accelerator,
global_step,
weight_dtype,
)
# image_logs = None
for epoch in range(first_epoch, args.num_train_epochs):
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(unet):
# Convert images to latent space
latents = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
latents = latents * vae.config.scaling_factor
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
with torch.no_grad():
# Get the text embedding for conditioning
encoder_hidden_states = text_encoder(
batch["caption"]["input_ids"].squeeze(1),
# batch['caption']['attention_mask'].squeeze(1),
return_dict=False,
)[0]
cross_attention_kwargs = {}
cross_attention_kwargs["gligen"] = {
"boxes": batch["boxes"],
"positive_embeddings": batch["text_embeddings_before_projection"],
"masks": batch["masks"],
}
# Predict the noise residual
model_pred = unet(
noisy_latents,
timesteps,
encoder_hidden_states=encoder_hidden_states,
cross_attention_kwargs=cross_attention_kwargs,
return_dict=False,
)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
target = noise_scheduler.get_velocity(latents, noise, timesteps)
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
accelerator.backward(loss)
if accelerator.sync_gradients:
accelerator.clip_grad_norm_(params_to_optimize, args.max_grad_norm)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad(set_to_none=args.set_grads_to_none)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if global_step % args.checkpointing_steps == 0:
if accelerator.is_main_process:
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
if args.checkpoints_total_limit is not None:
checkpoints = os.listdir(args.output_dir)
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
if len(checkpoints) >= args.checkpoints_total_limit:
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
removing_checkpoints = checkpoints[0:num_to_remove]
logger.info(
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
)
logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")
for removing_checkpoint in removing_checkpoints:
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
shutil.rmtree(removing_checkpoint)
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step:06d}")
accelerator.save_state(save_path)
logger.info(f"Saved state to {save_path}")
# if args.validation_prompt is not None and global_step % args.validation_steps == 0:
log_validation(
vae,
text_encoder,
tokenizer,
unet,
noise_scheduler,
args,
accelerator,
global_step,
weight_dtype,
)
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
progress_bar.set_postfix(**logs)
accelerator.log(logs, step=global_step)
if global_step >= args.max_train_steps:
break
# Create the pipeline using using the trained modules and save it.
accelerator.wait_for_everyone()
if accelerator.is_main_process:
unet = unwrap_model(unet)
unet.save_pretrained(args.output_dir)
#
# # Run a final round of validation.
# image_logs = None
# if args.validation_prompt is not None:
# image_logs = log_validation(
# vae=vae,
# text_encoder=text_encoder,
# tokenizer=tokenizer,
# unet=unet,
# controlnet=None,
# args=args,
# accelerator=accelerator,
# weight_dtype=weight_dtype,
# step=global_step,
# is_final_validation=True,
# )
#
# if args.push_to_hub:
# save_model_card(
# repo_id,
# image_logs=image_logs,
# base_model=args.pretrained_model_name_or_path,
# repo_folder=args.output_dir,
# )
# upload_folder(
# repo_id=repo_id,
# folder_path=args.output_dir,
# commit_message="End of training",
# ignore_patterns=["step_*", "epoch_*"],
# )
accelerator.end_training()
if __name__ == "__main__":
args = parse_args()
main(args)