Spaces:
Running
on
Zero
Running
on
Zero
# coding=utf-8 | |
# Copyright 2024 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from PIL import Image | |
from transformers import CLIPTokenizer | |
from transformers.models.blip_2.configuration_blip_2 import Blip2Config | |
from transformers.models.clip.configuration_clip import CLIPTextConfig | |
from diffusers import AutoencoderKL, BlipDiffusionPipeline, PNDMScheduler, UNet2DConditionModel | |
from diffusers.utils.testing_utils import enable_full_determinism | |
from src.diffusers.pipelines.blip_diffusion.blip_image_processing import BlipImageProcessor | |
from src.diffusers.pipelines.blip_diffusion.modeling_blip2 import Blip2QFormerModel | |
from src.diffusers.pipelines.blip_diffusion.modeling_ctx_clip import ContextCLIPTextModel | |
from ..test_pipelines_common import PipelineTesterMixin | |
enable_full_determinism() | |
class BlipDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
pipeline_class = BlipDiffusionPipeline | |
params = [ | |
"prompt", | |
"reference_image", | |
"source_subject_category", | |
"target_subject_category", | |
] | |
batch_params = [ | |
"prompt", | |
"reference_image", | |
"source_subject_category", | |
"target_subject_category", | |
] | |
required_optional_params = [ | |
"generator", | |
"height", | |
"width", | |
"latents", | |
"guidance_scale", | |
"num_inference_steps", | |
"neg_prompt", | |
"guidance_scale", | |
"prompt_strength", | |
"prompt_reps", | |
] | |
def get_dummy_components(self): | |
torch.manual_seed(0) | |
text_encoder_config = CLIPTextConfig( | |
vocab_size=1000, | |
hidden_size=8, | |
intermediate_size=8, | |
projection_dim=8, | |
num_hidden_layers=1, | |
num_attention_heads=1, | |
max_position_embeddings=77, | |
) | |
text_encoder = ContextCLIPTextModel(text_encoder_config) | |
vae = AutoencoderKL( | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownEncoderBlock2D",), | |
up_block_types=("UpDecoderBlock2D",), | |
block_out_channels=(8,), | |
norm_num_groups=8, | |
layers_per_block=1, | |
act_fn="silu", | |
latent_channels=4, | |
sample_size=8, | |
) | |
blip_vision_config = { | |
"hidden_size": 8, | |
"intermediate_size": 8, | |
"num_hidden_layers": 1, | |
"num_attention_heads": 1, | |
"image_size": 224, | |
"patch_size": 14, | |
"hidden_act": "quick_gelu", | |
} | |
blip_qformer_config = { | |
"vocab_size": 1000, | |
"hidden_size": 8, | |
"num_hidden_layers": 1, | |
"num_attention_heads": 1, | |
"intermediate_size": 8, | |
"max_position_embeddings": 512, | |
"cross_attention_frequency": 1, | |
"encoder_hidden_size": 8, | |
} | |
qformer_config = Blip2Config( | |
vision_config=blip_vision_config, | |
qformer_config=blip_qformer_config, | |
num_query_tokens=8, | |
tokenizer="hf-internal-testing/tiny-random-bert", | |
) | |
qformer = Blip2QFormerModel(qformer_config) | |
unet = UNet2DConditionModel( | |
block_out_channels=(8, 16), | |
norm_num_groups=8, | |
layers_per_block=1, | |
sample_size=16, | |
in_channels=4, | |
out_channels=4, | |
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"), | |
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"), | |
cross_attention_dim=8, | |
) | |
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | |
scheduler = PNDMScheduler( | |
beta_start=0.00085, | |
beta_end=0.012, | |
beta_schedule="scaled_linear", | |
set_alpha_to_one=False, | |
skip_prk_steps=True, | |
) | |
vae.eval() | |
qformer.eval() | |
text_encoder.eval() | |
image_processor = BlipImageProcessor() | |
components = { | |
"text_encoder": text_encoder, | |
"vae": vae, | |
"qformer": qformer, | |
"unet": unet, | |
"tokenizer": tokenizer, | |
"scheduler": scheduler, | |
"image_processor": image_processor, | |
} | |
return components | |
def get_dummy_inputs(self, device, seed=0): | |
np.random.seed(seed) | |
reference_image = np.random.rand(32, 32, 3) * 255 | |
reference_image = Image.fromarray(reference_image.astype("uint8")).convert("RGBA") | |
if str(device).startswith("mps"): | |
generator = torch.manual_seed(seed) | |
else: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
inputs = { | |
"prompt": "swimming underwater", | |
"generator": generator, | |
"reference_image": reference_image, | |
"source_subject_category": "dog", | |
"target_subject_category": "dog", | |
"height": 32, | |
"width": 32, | |
"guidance_scale": 7.5, | |
"num_inference_steps": 2, | |
"output_type": "np", | |
} | |
return inputs | |
def test_blipdiffusion(self): | |
device = "cpu" | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe = pipe.to(device) | |
pipe.set_progress_bar_config(disable=None) | |
image = pipe(**self.get_dummy_inputs(device))[0] | |
image_slice = image[0, -3:, -3:, 0] | |
assert image.shape == (1, 16, 16, 4) | |
expected_slice = np.array( | |
[0.5329548, 0.8372512, 0.33269387, 0.82096875, 0.43657133, 0.3783, 0.5953028, 0.51934963, 0.42142007] | |
) | |
assert ( | |
np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 | |
), f" expected_slice {image_slice.flatten()}, but got {image_slice.flatten()}" | |