BleachNick's picture
upload required packages
87d40d2
import tempfile
import numpy as np
import torch
from transformers import AutoTokenizer, T5EncoderModel
from diffusers import DDPMScheduler, UNet2DConditionModel
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.pipelines.deepfloyd_if import IFWatermarker
from diffusers.utils.testing_utils import torch_device
from ..test_pipelines_common import to_np
# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests.
class IFPipelineTesterMixin:
def _get_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=1,
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=3,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
def _get_superresolution_dummy_components(self):
torch.manual_seed(0)
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
torch.manual_seed(0)
unet = UNet2DConditionModel(
sample_size=32,
layers_per_block=[1, 2],
block_out_channels=[32, 64],
down_block_types=[
"ResnetDownsampleBlock2D",
"SimpleCrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DSimpleCrossAttn",
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"],
in_channels=6,
out_channels=6,
cross_attention_dim=32,
encoder_hid_dim=32,
attention_head_dim=8,
addition_embed_type="text",
addition_embed_type_num_heads=2,
cross_attention_norm="group_norm",
resnet_time_scale_shift="scale_shift",
act_fn="gelu",
class_embed_type="timestep",
mid_block_scale_factor=1.414,
time_embedding_act_fn="gelu",
time_embedding_dim=32,
)
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
torch.manual_seed(0)
scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
thresholding=True,
dynamic_thresholding_ratio=0.95,
sample_max_value=1.0,
prediction_type="epsilon",
variance_type="learned_range",
)
torch.manual_seed(0)
image_noising_scheduler = DDPMScheduler(
num_train_timesteps=1000,
beta_schedule="squaredcos_cap_v2",
beta_start=0.0001,
beta_end=0.02,
)
torch.manual_seed(0)
watermarker = IFWatermarker()
return {
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"unet": unet,
"scheduler": scheduler,
"image_noising_scheduler": image_noising_scheduler,
"watermarker": watermarker,
"safety_checker": None,
"feature_extractor": None,
}
# this test is modified from the base class because if pipelines set the text encoder
# as optional with the intention that the user is allowed to encode the prompt once
# and then pass the embeddings directly to the pipeline. The base class test uses
# the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded
# prompt to the pipeline when the text encoder is set to None, throwing an error.
# So we make the test reflect the intended usage of setting the text encoder to None.
def _test_save_load_optional_components(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
prompt = inputs["prompt"]
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
if "image" in inputs:
image = inputs["image"]
else:
image = None
if "mask_image" in inputs:
mask_image = inputs["mask_image"]
else:
mask_image = None
if "original_image" in inputs:
original_image = inputs["original_image"]
else:
original_image = None
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt)
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
generator = inputs["generator"]
num_inference_steps = inputs["num_inference_steps"]
output_type = inputs["output_type"]
# inputs with prompt converted to embeddings
inputs = {
"prompt_embeds": prompt_embeds,
"negative_prompt_embeds": negative_prompt_embeds,
"generator": generator,
"num_inference_steps": num_inference_steps,
"output_type": output_type,
}
if image is not None:
inputs["image"] = image
if mask_image is not None:
inputs["mask_image"] = mask_image
if original_image is not None:
inputs["original_image"] = original_image
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)
# Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized.
# This should be handled in the base test and then this method can be removed.
def _test_save_load_local(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, 1e-4)