Spaces:
Running
on
Zero
Running
on
Zero
import tempfile | |
import numpy as np | |
import torch | |
from transformers import AutoTokenizer, T5EncoderModel | |
from diffusers import DDPMScheduler, UNet2DConditionModel | |
from diffusers.models.attention_processor import AttnAddedKVProcessor | |
from diffusers.pipelines.deepfloyd_if import IFWatermarker | |
from diffusers.utils.testing_utils import torch_device | |
from ..test_pipelines_common import to_np | |
# WARN: the hf-internal-testing/tiny-random-t5 text encoder has some non-determinism in the `save_load` tests. | |
class IFPipelineTesterMixin: | |
def _get_dummy_components(self): | |
torch.manual_seed(0) | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
sample_size=32, | |
layers_per_block=1, | |
block_out_channels=[32, 64], | |
down_block_types=[ | |
"ResnetDownsampleBlock2D", | |
"SimpleCrossAttnDownBlock2D", | |
], | |
mid_block_type="UNetMidBlock2DSimpleCrossAttn", | |
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], | |
in_channels=3, | |
out_channels=6, | |
cross_attention_dim=32, | |
encoder_hid_dim=32, | |
attention_head_dim=8, | |
addition_embed_type="text", | |
addition_embed_type_num_heads=2, | |
cross_attention_norm="group_norm", | |
resnet_time_scale_shift="scale_shift", | |
act_fn="gelu", | |
) | |
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests | |
torch.manual_seed(0) | |
scheduler = DDPMScheduler( | |
num_train_timesteps=1000, | |
beta_schedule="squaredcos_cap_v2", | |
beta_start=0.0001, | |
beta_end=0.02, | |
thresholding=True, | |
dynamic_thresholding_ratio=0.95, | |
sample_max_value=1.0, | |
prediction_type="epsilon", | |
variance_type="learned_range", | |
) | |
torch.manual_seed(0) | |
watermarker = IFWatermarker() | |
return { | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"unet": unet, | |
"scheduler": scheduler, | |
"watermarker": watermarker, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
def _get_superresolution_dummy_components(self): | |
torch.manual_seed(0) | |
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5") | |
torch.manual_seed(0) | |
unet = UNet2DConditionModel( | |
sample_size=32, | |
layers_per_block=[1, 2], | |
block_out_channels=[32, 64], | |
down_block_types=[ | |
"ResnetDownsampleBlock2D", | |
"SimpleCrossAttnDownBlock2D", | |
], | |
mid_block_type="UNetMidBlock2DSimpleCrossAttn", | |
up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"], | |
in_channels=6, | |
out_channels=6, | |
cross_attention_dim=32, | |
encoder_hid_dim=32, | |
attention_head_dim=8, | |
addition_embed_type="text", | |
addition_embed_type_num_heads=2, | |
cross_attention_norm="group_norm", | |
resnet_time_scale_shift="scale_shift", | |
act_fn="gelu", | |
class_embed_type="timestep", | |
mid_block_scale_factor=1.414, | |
time_embedding_act_fn="gelu", | |
time_embedding_dim=32, | |
) | |
unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests | |
torch.manual_seed(0) | |
scheduler = DDPMScheduler( | |
num_train_timesteps=1000, | |
beta_schedule="squaredcos_cap_v2", | |
beta_start=0.0001, | |
beta_end=0.02, | |
thresholding=True, | |
dynamic_thresholding_ratio=0.95, | |
sample_max_value=1.0, | |
prediction_type="epsilon", | |
variance_type="learned_range", | |
) | |
torch.manual_seed(0) | |
image_noising_scheduler = DDPMScheduler( | |
num_train_timesteps=1000, | |
beta_schedule="squaredcos_cap_v2", | |
beta_start=0.0001, | |
beta_end=0.02, | |
) | |
torch.manual_seed(0) | |
watermarker = IFWatermarker() | |
return { | |
"text_encoder": text_encoder, | |
"tokenizer": tokenizer, | |
"unet": unet, | |
"scheduler": scheduler, | |
"image_noising_scheduler": image_noising_scheduler, | |
"watermarker": watermarker, | |
"safety_checker": None, | |
"feature_extractor": None, | |
} | |
# this test is modified from the base class because if pipelines set the text encoder | |
# as optional with the intention that the user is allowed to encode the prompt once | |
# and then pass the embeddings directly to the pipeline. The base class test uses | |
# the unmodified arguments from `self.get_dummy_inputs` which will pass the unencoded | |
# prompt to the pipeline when the text encoder is set to None, throwing an error. | |
# So we make the test reflect the intended usage of setting the text encoder to None. | |
def _test_save_load_optional_components(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
prompt = inputs["prompt"] | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
if "image" in inputs: | |
image = inputs["image"] | |
else: | |
image = None | |
if "mask_image" in inputs: | |
mask_image = inputs["mask_image"] | |
else: | |
mask_image = None | |
if "original_image" in inputs: | |
original_image = inputs["original_image"] | |
else: | |
original_image = None | |
prompt_embeds, negative_prompt_embeds = pipe.encode_prompt(prompt) | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
} | |
if image is not None: | |
inputs["image"] = image | |
if mask_image is not None: | |
inputs["mask_image"] = mask_image | |
if original_image is not None: | |
inputs["original_image"] = original_image | |
# set all optional components to None | |
for optional_component in pipe._optional_components: | |
setattr(pipe, optional_component, None) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests | |
for optional_component in pipe._optional_components: | |
self.assertTrue( | |
getattr(pipe_loaded, optional_component) is None, | |
f"`{optional_component}` did not stay set to None after loading.", | |
) | |
inputs = self.get_dummy_inputs(torch_device) | |
generator = inputs["generator"] | |
num_inference_steps = inputs["num_inference_steps"] | |
output_type = inputs["output_type"] | |
# inputs with prompt converted to embeddings | |
inputs = { | |
"prompt_embeds": prompt_embeds, | |
"negative_prompt_embeds": negative_prompt_embeds, | |
"generator": generator, | |
"num_inference_steps": num_inference_steps, | |
"output_type": output_type, | |
} | |
if image is not None: | |
inputs["image"] = image | |
if mask_image is not None: | |
inputs["mask_image"] = mask_image | |
if original_image is not None: | |
inputs["original_image"] = original_image | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |
# Modified from `PipelineTesterMixin` to set the attn processor as it's not serialized. | |
# This should be handled in the base test and then this method can be removed. | |
def _test_save_load_local(self): | |
components = self.get_dummy_components() | |
pipe = self.pipeline_class(**components) | |
pipe.to(torch_device) | |
pipe.set_progress_bar_config(disable=None) | |
inputs = self.get_dummy_inputs(torch_device) | |
output = pipe(**inputs)[0] | |
with tempfile.TemporaryDirectory() as tmpdir: | |
pipe.save_pretrained(tmpdir) | |
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
pipe_loaded.to(torch_device) | |
pipe_loaded.set_progress_bar_config(disable=None) | |
pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor()) # For reproducibility tests | |
inputs = self.get_dummy_inputs(torch_device) | |
output_loaded = pipe_loaded(**inputs)[0] | |
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
self.assertLess(max_diff, 1e-4) | |