import spaces import torch from diffusers import StableDiffusion3InstructPix2PixPipeline, SD3Transformer2DModel import gradio as gr import PIL.Image import numpy as np from PIL import Image, ImageOps pipe = StableDiffusion3InstructPix2PixPipeline.from_pretrained("BleachNick/SD3_UltraEdit_w_mask", torch_dtype=torch.float16) pipe = pipe.to("cuda") @spaces.GPU(duration=20) def generate(image_mask, prompt, num_inference_steps=50, image_guidance_scale=1.6, guidance_scale=7.5, seed=255): def is_blank_mask(mask_img): # Convert the mask to a numpy array and check if all values are 0 (black/transparent) mask_array = np.array(mask_img.convert('L')) # Convert to luminance to simplify the check return np.all(mask_array == 0) # Set the seed for reproducibility seed = int(seed) generator = torch.manual_seed(seed) img = image_mask["background"].convert("RGB") mask_img = image_mask["layers"][0].getchannel('A').convert("RGB") # Central crop to desired size desired_size = (512, 512) img = ImageOps.fit(img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5)) mask_img = ImageOps.fit(mask_img, desired_size, method=Image.LANCZOS, centering=(0.5, 0.5)) if is_blank_mask(mask_img): # Create a mask of the same size with all values set to 255 (white) mask_img = PIL.Image.new('RGB', img.size, color=(255, 255, 255)) mask_img = mask_img.convert('RGB') image = pipe( prompt, image=img, mask_img=mask_img, num_inference_steps=num_inference_steps, image_guidance_scale=image_guidance_scale, guidance_scale=guidance_scale, generator=generator ).images[0] return image,mask_img # image_mask_input = gr.ImageMask(label="Input Image", type="pil", brush_color="#000000", elem_id="inputmask", # shape=(512, 512)) image_mask_input = gr.ImageMask(sources='upload',type="pil",label="Input Image: Mask with pen or leave unmasked",transforms=(),layers=False) prompt_input = gr.Textbox(label="Prompt") num_inference_steps_input = gr.Slider(minimum=0, maximum=100, value=50, label="Number of Inference Steps") image_guidance_scale_input = gr.Slider(minimum=0.0, maximum=2.5, value=1.5, label="Image Guidance Scale") guidance_scale_input = gr.Slider(minimum=0.0, maximum=17.5, value=12.5, label="Guidance Scale") seed_input = gr.Textbox(value="255", label="Random Seed") inputs = [image_mask_input, prompt_input, num_inference_steps_input, image_guidance_scale_input, guidance_scale_input, seed_input] outputs = gr.Image(label="Generated Image") # Custom HTML content article_html = """

🖼️ UltraEdit for Fine-Grained Image Editing

Haozhe Zhao1*, Xiaojian Ma2*, Liang Chen1, Shuzheng Si1, Rujie Wu1, Kaikai An1, Peiyu Yu3, Minjia Zhang4, Qing Li2, Baobao Chang2

1Peking University, 2BIGAI, 3UCLA, 4UIUC

Dataset_4M Dataset Dataset_500k Dataset 🔗 Page Checkpoint Checkpoint GitHub GitHub

UltraEdit is a dataset designed for fine-grained, instruction-based image editing. It contains over 4 million free-form image editing samples and more than 100,000 region-based image editing samples, automatically generated with real images as anchors.

This demo allows you to perform image editing using the Stable Diffusion 3 model trained with this extensive dataset. It supports both free-form (without mask) and region-based (with mask) image editing. Use the sliders to adjust the inference steps and guidance scales, and provide a seed for reproducibility. The image guidance scale of 1.5 and text guidance scale of 7.5 / 12.5 is a good start for free-from/region-based image editing.

""" html='''

Usage Instructions: You need to upload the images and prompts for editing. Use the pen tool to mark the areas you want to edit. If no region is marked, it will resort to free-form editing.

''' demo = gr.Interface( fn=generate, inputs=inputs, outputs=outputs, description=article_html, # Add article parameter article = html ) demo.queue().launch()