# RealFill [RealFill](https://arxiv.org/abs/2309.16668) is a method to personalize text2image inpainting models like stable diffusion inpainting given just a few(1~5) images of a scene. The `train_realfill.py` script shows how to implement the training procedure for stable diffusion inpainting. ## Running locally with PyTorch ### Installing the dependencies Before running the scripts, make sure to install the library's training dependencies: cd to the realfill folder and run ```bash cd realfill pip install -r requirements.txt ``` And initialize an [🤗Accelerate](https://github.com/huggingface/accelerate/) environment with: ```bash accelerate config ``` Or for a default accelerate configuration without answering questions about your environment ```bash accelerate config default ``` Or if your environment doesn't support an interactive shell e.g. a notebook ```python from accelerate.utils import write_basic_config write_basic_config() ``` When running `accelerate config`, if we specify torch compile mode to True there can be dramatic speedups. ### Toy example Now let's fill the real. For this example, we will use some images of the flower girl example from the paper. We already provide some images for testing in [this link](https://github.com/thuanz123/realfill/tree/main/data/flowerwoman) You only have to launch the training using: ```bash export MODEL_NAME="stabilityai/stable-diffusion-2-inpainting" export TRAIN_DIR="data/flowerwoman" export OUTPUT_DIR="flowerwoman-model" accelerate launch train_realfill.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=16 \ --gradient_accumulation_steps=1 \ --unet_learning_rate=2e-4 \ --text_encoder_learning_rate=4e-5 \ --lr_scheduler="constant" \ --lr_warmup_steps=100 \ --max_train_steps=2000 \ --lora_rank=8 \ --lora_dropout=0.1 \ --lora_alpha=16 \ ``` ### Training on a low-memory GPU: It is possible to run realfill on a low-memory GPU by using the following optimizations: - [gradient checkpointing and the 8-bit optimizer](#training-with-gradient-checkpointing-and-8-bit-optimizers) - [xformers](#training-with-xformers) - [setting grads to none](#set-grads-to-none) ```bash export MODEL_NAME="stabilityai/stable-diffusion-2-inpainting" export TRAIN_DIR="data/flowerwoman" export OUTPUT_DIR="flowerwoman-model" accelerate launch train_realfill.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --train_data_dir=$TRAIN_DIR \ --output_dir=$OUTPUT_DIR \ --resolution=512 \ --train_batch_size=16 \ --gradient_accumulation_steps=1 --gradient_checkpointing \ --use_8bit_adam \ --enable_xformers_memory_efficient_attention \ --set_grads_to_none \ --unet_learning_rate=2e-4 \ --text_encoder_learning_rate=4e-5 \ --lr_scheduler="constant" \ --lr_warmup_steps=100 \ --max_train_steps=2000 \ --lora_rank=8 \ --lora_dropout=0.1 \ --lora_alpha=16 \ ``` ### Training with gradient checkpointing and 8-bit optimizers: With the help of gradient checkpointing and the 8-bit optimizer from bitsandbytes it's possible to run train realfill on a 16GB GPU. To install `bitsandbytes` please refer to this [readme](https://github.com/TimDettmers/bitsandbytes#requirements--installation). ### Training with xformers: You can enable memory efficient attention by [installing xFormers](https://github.com/facebookresearch/xformers#installing-xformers) and padding the `--enable_xformers_memory_efficient_attention` argument to the script. ### Set grads to none To save even more memory, pass the `--set_grads_to_none` argument to the script. This will set grads to None instead of zero. However, be aware that it changes certain behaviors, so if you start experiencing any problems, remove this argument. More info: https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html ## Acknowledge This repo is built upon the code of DreamBooth from diffusers and we thank the developers for their great works and efforts to release source code. Furthermore, a special "thank you" to RealFill's authors for publishing such an amazing work.