import spaces
import os
import gradio as gr
from time import sleep
from signal import SIGTERM
from psutil import process_iter
from settings import GRAND3D_Settings
from utils import list_dirs
import open3d as o3d
from copy import deepcopy
import numpy as np
import re
from bs4 import BeautifulSoup
import logging
# The following line sets the root logger level as well.
# It's equivalent to both previous statements combined:
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
from session import Session
from model import load_model_and_dataloader, get_model_response
# Load model and tokenizer once at the start
model_path = "checkpoints/llava_lora_grounded_obj_ref_checkpoint-4896"
model_base = "checkpoints/llava-llama-2-7b-chat-lightning-preview"
load_8bit = False
load_4bit = False
load_bf16 = True
scene_to_obj_mapping = "data/predicted_scene_data_update_5.json"
# scene_to_obj_mapping = "data/scanrefer_ground_truth_scene_graph.json"
max_new_tokens = 5000
obj_context_feature_type = "text"
tokenizer, model, data_loader = load_model_and_dataloader(
model_path=model_path,
model_base=model_base,
load_8bit=load_8bit,
load_4bit=load_4bit,
load_bf16=load_bf16,
scene_to_obj_mapping=scene_to_obj_mapping,
device_map='cpu',
) # Huggingface Zero-GPU has to use .to(device) to set the device, otherwise it will fail
model.to("cuda") # Huggingface Zero-GPU requires explicit device placement
def get_chatbot_response(user_chat_input, scene_id):
# Get the response from the model
prompt, response = get_model_response(
model=model,
tokenizer=tokenizer,
data_loader=data_loader,
scene_id=scene_id,
user_input=user_chat_input,
max_new_tokens=max_new_tokens,
temperature=0.2,
top_p=0.9
)
return scene_id, prompt, response
# def get_chatbot_response(user_chat_input):
# # Get the response from the chatbot
# scene_id = "scene0643_00"
# scene_graph = """
# Object-centric context: : {'category': 'door', 'centroid': '[0.35, 1.99, 1.11]', 'extent': '[0.68, 0.65, 2.11]'}; : {'category': 'ceiling', 'centroid': '[1.04, -1.39, 2.68]', 'extent': '[0.18, 0.90, 0.05]'}; : {'category': 'ceiling', 'centroid': '[0.77, 2.09, 2.65]', 'extent': '[0.94, 0.86, 0.11]'}; : {'category': 'trash can', 'centroid': '[-0.61, -2.16, 0.21]', 'extent': '[0.42, 0.36, 0.41]'}; : {'category': 'chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; : {'category': 'trash can', 'centroid': '[-0.22, -2.13, 0.24]', 'extent': '[0.40, 0.28, 0.39]'}; : {'category': 'cabinet', 'centroid': '[-1.24, 0.00, 0.58]', 'extent': '[0.61, 0.57, 0.79]'}; : {'category': 'cup', 'centroid': '[0.62, 0.23, 0.77]', 'extent': '[0.14, 0.14, 0.08]'}; : {'category': 'window', 'centroid': '[-0.35, -2.87, 1.13]', 'extent': '[2.05, 0.60, 1.07]'}; : {'category': 'file cabinet', 'centroid': '[0.40, -1.97, 0.39]', 'extent': '[0.40, 0.66, 0.73]'}; : {'category': 'monitor', 'centroid': '[0.92, -1.51, 0.97]', 'extent': '[0.25, 0.57, 0.47]'}; : {'category': 'chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; : {'category': 'desk', 'centroid': '[0.64, 0.75, 0.57]', 'extent': '[0.76, 1.60, 0.82]'}; : {'category': 'chair', 'centroid': '[0.55, -0.33, 0.48]', 'extent': '[0.60, 0.60, 0.87]'}; : {'category': 'office chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; : {'category': 'office chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; : {'category': 'chair', 'centroid': '[-0.28, 1.56, 0.46]', 'extent': '[0.67, 0.55, 1.02]'}; : {'category': 'monitor', 'centroid': '[0.98, 0.56, 1.05]', 'extent': '[0.21, 0.60, 0.54]'}; : {'category': 'doorframe', 'centroid': '[-0.17, 2.42, 1.01]', 'extent': '[0.16, 0.18, 1.70]'}; : {'category': 'chair', 'centroid': '[-0.86, -1.53, 0.43]', 'extent': '[0.54, 0.64, 0.97]'}; : {'category': 'bookshelf', 'centroid': '[0.93, 2.00, 1.34]', 'extent': '[0.73, 0.99, 2.60]'}; : {'category': 'office chair', 'centroid': '[0.35, -1.35, 0.50]', 'extent': '[0.46, 0.47, 0.94]'}; : {'category': 'desk', 'centroid': '[-1.23, 1.60, 0.70]', 'extent': '[0.80, 2.01, 0.51]'}; : {'category': 'book', 'centroid': '[0.91, 1.31, 0.89]', 'extent': '[0.34, 0.32, 0.30]'}; : {'category': 'desk', 'centroid': '[-1.24, -1.12, 0.54]', 'extent': '[0.79, 1.88, 0.85]'}; : {'category': 'desk', 'centroid': '[0.63, -1.51, 0.53]', 'extent': '[0.81, 1.97, 0.85]'}; : {'category': 'calendar', 'centroid': '[-1.72, -0.44, 1.40]', 'extent': '[0.07, 0.88, 0.83]'}; : {'category': 'office chair', 'centroid': '[0.34, 0.59, 0.43]', 'extent': '[0.65, 0.64, 0.94]'}; : {'category': 'file cabinet', 'centroid': '[-1.02, -0.76, 0.47]', 'extent': '[0.58, 0.75, 0.81]'}; : {'category': 'cup', 'centroid': '[-1.26, -1.65, 0.78]', 'extent': '[0.10, 0.12, 0.04]'}; : {'category': 'keyboard', 'centroid': '[0.55, 0.84, 0.73]', 'extent': '[0.22, 0.15, 0.03]'}
# """
# response = """
# a brown wooden office desk
[] on the left to the gray shelf
[]. These sentences refer to the brown wooden office desk
[].
# """
# return scene_id, scene_graph, response
# Resetting to blank
def reset_textbox():
return gr.update(value="")
# to set a component as visible=False
def set_visible_false():
return gr.update(visible=False)
# to set a component as visible=True
def set_visible_true():
return gr.update(visible=True)
def change_scene_or_system_prompt(dropdown_scene_selection: str):
# reset model_3d, chatbot_for_display, chat_counter, server_status_code
new_session_state = Session.create_for_scene(dropdown_scene_selection)
file_name = f"{dropdown_scene_selection}.obj"
print(os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name))
return (
new_session_state,
os.path.join(GRAND3D_Settings.data_path, dropdown_scene_selection, file_name),
None,
new_session_state.chat_history_for_display,
)
def cylinder_frame(p0, p1):
"""Calculate the transformation matrix to position a unit cylinder between two points."""
direction = np.asarray(p1) - np.asarray(p0)
length = np.linalg.norm(direction)
direction /= length
# Computing rotation matrix using Rodrigues' formula
rot_axis = np.cross([0, 0, 1], direction)
rot_angle = np.arccos(np.dot([0, 0, 1], direction))
rot_matrix = o3d.geometry.get_rotation_matrix_from_axis_angle(rot_axis * rot_angle)
# Translation
translation = (np.asarray(p0) + np.asarray(p1)) / 2
transformation = np.eye(4)
transformation[:3, :3] = rot_matrix
transformation[:3, 3] = translation
scaling = np.eye(4)
scaling[2, 2] = length
transformation = np.matmul(transformation, scaling)
return transformation
def create_cylinder_mesh(p0, p1, color, radius=0.02, resolution=20, split=1):
"""Create a colored cylinder mesh between two points p0 and p1."""
cylinder = o3d.geometry.TriangleMesh.create_cylinder(
radius=radius, height=1, resolution=resolution, split=split
)
transformation = cylinder_frame(p0, p1)
cylinder.transform(transformation)
# Apply color
cylinder.paint_uniform_color(color)
return cylinder
def prettify_mesh_for_gradio(mesh):
# Define the transformation matrix
T = np.array([[0, -1, 0, 0], [0, 0, 1, 0], [-1, 0, 0, 0], [0, 0, 0, 1]])
# Apply the transformation
mesh.transform(T)
mesh.scale(10.0, center=mesh.get_center())
bright_factor = 1 # Adjust this factor to get the desired brightness
mesh.vertex_colors = o3d.utility.Vector3dVector(
np.clip(np.asarray(mesh.vertex_colors) * bright_factor, 0, 1)
)
return mesh
def create_bbox(center, extents, color=[1, 0, 0], radius=0.02):
"""Create a colored bounding box with given center, extents, and line thickness."""
# ... [The same code as before to define corners and lines] ...
print(extents)
print(type(extents))
extents = extents.replace("[", "").replace("]", "")
center = center.replace("[", "").replace("]", "")
extents = [float(x.strip()) for x in extents.split(",")]
center = [float(x.strip()) for x in center.split(",")]
sx, sy, sz = float(extents[0]), float(extents[1]), float(extents[2])
x_corners = [sx / 2, sx / 2, -sx / 2, -sx / 2, sx / 2, sx / 2, -sx / 2, -sx / 2]
y_corners = [sy / 2, -sy / 2, -sy / 2, sy / 2, sy / 2, -sy / 2, -sy / 2, sy / 2]
z_corners = [sz / 2, sz / 2, sz / 2, sz / 2, -sz / 2, -sz / 2, -sz / 2, -sz / 2]
corners_3d = np.vstack([x_corners, y_corners, z_corners])
corners_3d[0, :] = corners_3d[0, :] + float(center[0])
corners_3d[1, :] = corners_3d[1, :] + float(center[1])
corners_3d[2, :] = corners_3d[2, :] + float(center[2])
corners_3d = np.transpose(corners_3d)
lines = [
[0, 1],
[1, 2],
[2, 3],
[3, 0],
[4, 5],
[5, 6],
[6, 7],
[7, 4],
[0, 4],
[1, 5],
[2, 6],
[3, 7],
]
cylinders = []
for line in lines:
p0, p1 = corners_3d[line[0]], corners_3d[line[1]]
cylinders.append(create_cylinder_mesh(p0, p1, color, radius))
return cylinders
def highlight_clusters_in_mesh(
centroids_extents_detailed,
centroids_extends_refer,
mesh,
output_dir,
output_file_name="highlighted_mesh.glb",
):
print("*" * 50)
# Visualize the highlighted points by drawing 3D bounding boxes overlay on a mesh
old_mesh = deepcopy(mesh)
output_path = os.path.join(output_dir, "mesh_vis")
if not os.path.exists(output_path):
os.makedirs(output_path)
# Create a combined mesh to hold both the original and the bounding boxes
combined_mesh = o3d.geometry.TriangleMesh()
combined_mesh += old_mesh
# Draw bounding boxes for each centroid and extent
for center, extent in centroids_extents_detailed:
print("center: ", center)
print("extent: ", extent)
bbox = create_bbox(center, extent, color=[0, 0, 1]) # Red color for all boxes
for b in bbox:
combined_mesh += b
for center, extent in centroids_extends_refer:
bbox = create_bbox(center, extent, color=[0, 1, 0])
for b in bbox:
combined_mesh += b
combined_mesh = prettify_mesh_for_gradio(combined_mesh)
# Save the combined mesh
output_file_path = os.path.join(output_path, output_file_name)
o3d.io.write_triangle_mesh(
output_file_path, combined_mesh, write_vertex_colors=True
)
print("*" * 50)
return output_file_path
def extract_objects(text):
return re.findall(r"", text)
# Parse the scene graph into a dictionary
def parse_scene_graph(scene_graph):
scene_dict = {}
matches = re.findall(r": (\{.*?\})", scene_graph)
for match in matches:
obj_id = f""
obj_data = eval(match[1])
scene_dict[obj_id] = obj_data
return scene_dict
def get_centroids_extents(obj_list, scene_dict):
centroids_extents = []
for obj in obj_list:
if obj in scene_dict:
centroid = scene_dict[obj]["centroid"]
extent = scene_dict[obj]["extent"]
centroids_extents.append((centroid, extent))
return centroids_extents
@spaces.GPU
def language_model_forward(
session_state, user_chat_input, top_p, temperature, dropdown_scene
):
session_state = Session.create_for_scene(dropdown_scene)
session_state.chat_history_for_display.append(
(user_chat_input, None)
) # append in a tuple format, first is user input, second is assistant response
yield session_state, None, session_state.chat_history_for_display
# Load in a 3D model
file_name = f"{session_state.scene}.obj"
original_model_path = os.path.join(
GRAND3D_Settings.data_path, session_state.scene, file_name
)
print("original_model_path: ", original_model_path)
# Load the GLB mesh
mesh = o3d.io.read_triangle_mesh(original_model_path)
# get chatbot response
scene_id, scene_graph, response = get_chatbot_response(user_chat_input, session_state.scene)
assert scene_id == session_state.scene # Ensure the scene ID matches
# use scene_graph and response to get centroids and extents
# Parse the scene graph into a dictionary
scene_dict = parse_scene_graph(scene_graph)
print("Model Input: " + str(scene_dict))
print("=" * 50)
print("Model Response: " + response)
# Parse the response to get detailed and refer expression groundings
soup = BeautifulSoup(response, "html.parser")
detailed_grounding_html = str(soup.find("detailed_grounding"))
refer_expression_grounding_html = str(soup.find("refer_expression_grounding"))
# Extract objects from both sections
detailed_objects = extract_objects(detailed_grounding_html)
refer_objects = extract_objects(refer_expression_grounding_html)
# Extract objects from both sections
print("detailed_objects: ", detailed_objects)
print("refer_objects: ", refer_objects)
# Perform set subtraction to get remaining objects
remaining_objects = list(set(detailed_objects) - set(refer_objects))
print("remaining_objects: ", remaining_objects)
centroids_extents_detailed = get_centroids_extents(remaining_objects, scene_dict)
print("centroids_extents_detailed: ", centroids_extents_detailed)
centroids_extents_refer = get_centroids_extents(refer_objects, scene_dict)
print("centroids_extents_refer: ", centroids_extents_refer)
# Define your centroids and extents here (example data)
# Highlight clusters in the mesh and save it
session_output_dir = session_state.get_session_output_dir()
highlighted_model_path = highlight_clusters_in_mesh(
centroids_extents_detailed,
centroids_extents_refer,
mesh,
session_output_dir,
output_file_name="highlighted_model.glb",
)
# Update the chat history with the response
last_turn = session_state.chat_history_for_display[-1] # first is user input, second is assistant response
last_turn = (last_turn[0], response)
session_state.chat_history_for_display[-1] = last_turn
session_state.save() # save the session state
yield session_state, highlighted_model_path, session_state.chat_history_for_display
title = """🤖 3D-GRAND: Towards Better Grounding and Less Hallucination for 3D-LLMs 🚀
[Project Page]
[3D-GRAND Data]
[3D-POPE Data]
"""
# Modifying existing Gradio Theme
# theme = gr.themes.Soft(
# primary_hue=gr.themes.colors.blue, secondary_hue=gr.themes.colors.pink
# )
with gr.Blocks(theme=gr.themes.Soft()) as demo:
session_state = gr.State(Session.create)
gr.HTML(title)
with gr.Column():
with gr.Row():
with gr.Column(scale=5):
dropdown_scene = gr.Dropdown(
choices=list_dirs(GRAND3D_Settings.data_path),
value=GRAND3D_Settings.default_scene,
interactive=True,
label="Select a scene",
)
model_3d = gr.Model3D(
value=os.path.join(
GRAND3D_Settings.data_path,
GRAND3D_Settings.default_scene,
f"{GRAND3D_Settings.default_scene}.obj",
),
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model",
camera_position=(-50, 65, 10),
zoom_speed=10.0,
)
gr.HTML(
"""
👆 SCROLL or DRAG on the 3D Model
to zoom in/out and rotate. Press CTRL and DRAG to pan.
"""
)
gr.HTML(
"""
👇 When grounding finishes,
the grounding result will be displayed below.
"""
)
model_3d_grounding_result = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="Grounding Result",
zoom_speed=15.0,
)
gr.HTML(
"""
■
= Landmark
■
= Chosen Target
"""
)
with gr.Column(scale=5):
chat_history_for_display = gr.Chatbot(
value=[(None, GRAND3D_Settings.INITIAL_MSG_FOR_DISPLAY)],
label="Chat Assistant",
height=510,
render_markdown=False,
sanitize_html=False,
)
with gr.Row():
with gr.Column(scale=8):
user_chat_input = gr.Textbox(
placeholder="I want to find the chair near the table",
show_label=False,
)
with gr.Column(scale=1, min_width=0):
send_button = gr.Button("Send", variant="primary")
with gr.Column(scale=1, min_width=0):
clear_button = gr.Button("Clear")
with gr.Row():
with gr.Accordion(label="Examples for user message:", open=True):
gr.Examples(
examples=[
["The TV on the drawer, opposing the bed."],
["the desk next to the window"]
],
inputs=user_chat_input,
)
with gr.Accordion("Parameters", open=False, visible=False):
top_p = gr.Slider(
minimum=0,
maximum=1.0,
value=1.0,
step=0.05,
interactive=True,
label="Top-p (nucleus sampling)",
)
temperature = gr.Slider(
minimum=0,
maximum=5.0,
value=1.0,
step=0.1,
interactive=True,
label="Temperature",
)
# gr.Markdown("### Terms of Service")
# gr.HTML(
# """By using this service, users are required to agree to the following terms:
# The service is a research preview intended for non-commercial use only.
# The service may collect user dialogue data for future research."""
# )
# Event handling
dropdown_scene.change(
fn=change_scene_or_system_prompt,
inputs=[dropdown_scene],
outputs=[session_state, model_3d, model_3d_grounding_result, chat_history_for_display],
)
clear_button.click(
fn=change_scene_or_system_prompt,
inputs=[dropdown_scene],
outputs=[session_state, model_3d, model_3d_grounding_result, chat_history_for_display],
)
user_chat_input.submit(
fn=language_model_forward,
inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
)
send_button.click(
fn=language_model_forward,
inputs=[session_state, user_chat_input, top_p, temperature, dropdown_scene],
outputs=[session_state, model_3d_grounding_result, chat_history_for_display],
)
send_button.click(reset_textbox, [], [user_chat_input])
user_chat_input.submit(reset_textbox, [], [user_chat_input])
sleep_time = 2
port = 7011
for x in range(1, 10): # try 8 times
try:
# put your logic here
gr.close_all()
demo.queue(
max_size=20,
).launch(
# debug=True,
# server_name="0.0.0.0",
# server_port=port,
# share=True
)
except OSError:
for proc in process_iter():
for conns in proc.connections(kind="inet"):
if conns.laddr.port == port:
proc.send_signal(SIGTERM) # or SIGKILL
print(f"Retrying {x} time...")
pass
sleep(sleep_time) # wait for 2 seconds before trying to fetch the data again
sleep_time *= 2 # exponential backoff