import dataclasses from enum import auto, Enum from typing import List, Tuple class SeparatorStyle(Enum): """Different separator style.""" SINGLE = auto() TWO = auto() MPT = auto() PLAIN = auto() LLAMA_2 = auto() @dataclasses.dataclass class Conversation: """A class that keeps all conversation history.""" system: str roles: List[str] messages: List[List[str]] offset: int max_extent: float = None mesh_centroid: List[float] = None sep_style: SeparatorStyle = SeparatorStyle.SINGLE sep: str = "###" sep2: str = None version: str = "Unknown" skip_next: bool = False bbox_tokenization_type: bool = "numerical" num_voxels_per_axis_for_location_tokens: int = 10 normalize_points_to_unit_cube: bool = True def get_prompt(self): messages = self.messages if len(messages) > 0 and type(messages[0][1]) is tuple: messages = self.messages.copy() init_role, init_msg = messages[0].copy() init_msg = init_msg[0].replace("", "").strip() if "mmtag" in self.version: messages[0] = (init_role, init_msg) messages.insert(0, (self.roles[0], "")) messages.insert(1, (self.roles[1], "Received.")) else: messages[0] = (init_role, "\n" + init_msg) if self.sep_style == SeparatorStyle.SINGLE: ret = self.system + self.sep for role, message in messages: if message: if type(message) is tuple: message = message[ 0 ] # (text, image, image_process_mode) for image input; (text, scene_selector) ret += role + ": " + message + self.sep else: ret += role + ":" elif self.sep_style == SeparatorStyle.TWO: seps = [self.sep, self.sep2] ret = self.system + seps[0] for i, (role, message) in enumerate(messages): if message: if type(message) is tuple: message = message[ 0 ] # (text, image, image_process_mode) for image input; (text, scene_selector) for 3d input ret += role + ": " + message + seps[i % 2] else: ret += role + ":" elif self.sep_style == SeparatorStyle.MPT: ret = self.system + self.sep for role, message in messages: if message: if type(message) is tuple: message = message[ 0 ] # (text, image, image_process_mode) for image input; (text, scene_selector) ret += role + message + self.sep else: ret += role elif self.sep_style == SeparatorStyle.LLAMA_2: wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n" wrap_inst = lambda msg: f"[INST] {msg} [/INST]" ret = "" for i, (role, message) in enumerate(messages): if i == 0: assert message, "first message should not be none" assert role == self.roles[0], "first message should come from user" if message: if type(message) is tuple: message = message[ 0 ] # (text, image, image_process_mode) for image input; (text, scene_selector) if i == 0: message = wrap_sys(self.system) + message if i % 2 == 0: message = wrap_inst(message) ret += self.sep + message else: ret += " " + message + " " + self.sep2 else: ret += "" ret = ret.lstrip(self.sep) elif self.sep_style == SeparatorStyle.PLAIN: seps = [self.sep, self.sep2] ret = self.system for i, (role, message) in enumerate(messages): if message: if type(message) is tuple: message = message[ 0 ] # (text, image, image_process_mode) for image input; (text, scene_selector) ret += message + seps[i % 2] else: ret += "" else: raise ValueError(f"Invalid style: {self.sep_style}") return ret def append_message(self, role, message): # for image input, message is (text, image, image_process_mode) # for 3d input, message is (text, scene_selector) self.messages.append([role, message]) def get_scene(self): for i, (role, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: return msg[1] return None def get_images(self, return_pil=False): images = [] for i, (role, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: import base64 from io import BytesIO from PIL import Image msg, image, image_process_mode = msg if image_process_mode == "Pad": def expand2square(pil_img, background_color=(122, 116, 104)): width, height = pil_img.size if width == height: return pil_img elif width > height: result = Image.new(pil_img.mode, (width, width), background_color) result.paste(pil_img, (0, (width - height) // 2)) return result else: result = Image.new(pil_img.mode, (height, height), background_color) result.paste(pil_img, ((height - width) // 2, 0)) return result image = expand2square(image) elif image_process_mode == "Crop": pass elif image_process_mode == "Resize": image = image.resize((336, 336)) else: raise ValueError(f"Invalid image_process_mode: {image_process_mode}") max_hw, min_hw = max(image.size), min(image.size) aspect_ratio = max_hw / min_hw max_len, min_len = 800, 400 shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) longest_edge = int(shortest_edge * aspect_ratio) W, H = image.size if H > W: H, W = longest_edge, shortest_edge else: H, W = shortest_edge, longest_edge image = image.resize((W, H)) if return_pil: images.append(image) else: buffered = BytesIO() image.save(buffered, format="PNG") img_b64_str = base64.b64encode(buffered.getvalue()).decode() images.append(img_b64_str) return images def to_gradio_chatbot(self): ret = [] for i, (role, msg) in enumerate(self.messages[self.offset :]): if i % 2 == 0: if type(msg) is tuple: if len(msg) == 3: # input is image, msg is (text, image, image_process_mode) import base64 from io import BytesIO msg, image, image_process_mode = msg max_hw, min_hw = max(image.size), min(image.size) aspect_ratio = max_hw / min_hw max_len, min_len = 800, 400 shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) longest_edge = int(shortest_edge * aspect_ratio) W, H = image.size if H > W: H, W = longest_edge, shortest_edge else: H, W = shortest_edge, longest_edge image = image.resize((W, H)) buffered = BytesIO() image.save(buffered, format="JPEG") img_b64_str = base64.b64encode(buffered.getvalue()).decode() img_str = f'user upload image' ret.append([img_str, None]) elif len(msg) == 2: # input is 3d, msg is (text, scene_selector) msg, scene = msg msg = msg.replace("", "").strip() if len(msg) > 0: ret.append([msg, None]) else: ret.append([msg, None]) else: ret[-1][-1] = msg return ret def copy(self): return Conversation( system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version, ) def dict(self, is_input_3d=False): if is_input_3d or len(self.get_images()) > 0: return { "system": self.system, "roles": self.roles, "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], "offset": self.offset, "sep": self.sep, "sep2": self.sep2, } return { "system": self.system, "roles": self.roles, "messages": self.messages, "offset": self.offset, "sep": self.sep, "sep2": self.sep2, } conv_vicuna_v0 = Conversation( system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), messages=( ( "Human", "What are the key differences between renewable and non-renewable energy sources?", ), ( "Assistant", "Renewable energy sources are those that can be replenished naturally in a relatively " "short amount of time, such as solar, wind, hydro, geothermal, and biomass. " "Non-renewable energy sources, on the other hand, are finite and will eventually be " "depleted, such as coal, oil, and natural gas. Here are some key differences between " "renewable and non-renewable energy sources:\n" "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " "energy sources are finite and will eventually run out.\n" "2. Environmental impact: Renewable energy sources have a much lower environmental impact " "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " "and other negative effects.\n" "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " "have lower operational costs than non-renewable sources.\n" "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " "locations than non-renewable sources.\n" "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " "situations and needs, while non-renewable sources are more rigid and inflexible.\n" "6. Sustainability: Renewable energy sources are more sustainable over the long term, while " "non-renewable sources are not, and their depletion can lead to economic and social instability.\n", ), ), offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) conv_vicuna_v1 = Conversation( system="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.", roles=("USER", "ASSISTANT"), version="v1", messages=(), offset=0, sep_style=SeparatorStyle.TWO, sep=" ", sep2="", ) conv_llama_2 = Conversation( system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", roles=("USER", "ASSISTANT"), version="llama_v2", messages=(), offset=0, sep_style=SeparatorStyle.LLAMA_2, sep="", sep2="", ) conv_llava_llama_2 = Conversation( system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.", roles=("USER", "ASSISTANT"), version="llama_v2", messages=(), offset=0, sep_style=SeparatorStyle.LLAMA_2, sep="", sep2="", ) conv_llava_llama_2_obj_identifier = Conversation( system="You are a helpful language and vision assistant that helps human reason about a 3D scene. " "You will be provided with a 3D scene context that contains a set of objects. " "You are able to understand the 3D scene, and answer the user's questions truthfully with respect to the 3D scene. " "In the 3D scene context, each object is represented by a unique identifier, such as , , etc. " "In all of your responses, you should explicitly ground each object noun phrase to the corresponding object identifier in the 3D scene." "For example, when the user asks 'Describe this room.', you should respond with this format: 'This is a living room with a

brown sofa

[] and

three chairs

[, , ].'" "Note that your answer should always enclose object noun phrases with

and

tags, followed by the corresponding object identifiers in square brackets.", roles=("USER", "ASSISTANT"), version="llama_v2", messages=(), offset=0, sep_style=SeparatorStyle.LLAMA_2, sep="", sep2="", ) conv_mpt = Conversation( system="""<|im_start|>system A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), version="mpt", messages=(), offset=0, sep_style=SeparatorStyle.MPT, sep="<|im_end|>", ) conv_llava_plain = Conversation( system="", roles=("", ""), messages=(), offset=0, sep_style=SeparatorStyle.PLAIN, sep="\n", ) conv_llava_v0 = Conversation( system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("Human", "Assistant"), messages=(("Human", "Hi!"), ("Assistant", "Hi there! How can I help you today?")), offset=2, sep_style=SeparatorStyle.SINGLE, sep="###", ) conv_llava_v0_mmtag = Conversation( system="A chat between a curious user and an artificial intelligence assistant. " "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." "The visual content will be provided with the following format: visual content.", roles=("Human", "Assistant"), messages=(), offset=0, sep_style=SeparatorStyle.SINGLE, sep="###", version="v0_mmtag", ) conv_llava_v1 = Conversation( system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.", roles=("USER", "ASSISTANT"), version="v1", messages=(), offset=0, sep_style=SeparatorStyle.TWO, sep=" ", sep2="", ) conv_llava_v1_mmtag = Conversation( system="A chat between a curious user and an artificial intelligence assistant. " "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." "The visual content will be provided with the following format: visual content.", roles=("USER", "ASSISTANT"), messages=(), offset=0, sep_style=SeparatorStyle.TWO, sep=" ", sep2="", version="v1_mmtag", ) default_conversation = conv_vicuna_v0 conv_templates = { "default": conv_vicuna_v0, "v0": conv_vicuna_v0, "v1": conv_vicuna_v1, "vicuna_v1": conv_vicuna_v1, "llama_2": conv_llama_2, "plain": conv_llava_plain, "v0_plain": conv_llava_plain, "llava_v0": conv_llava_v0, "v0_mmtag": conv_llava_v0_mmtag, "llava_v1": conv_llava_v1, "v1_mmtag": conv_llava_v1_mmtag, "llava_llama_2": conv_llava_llama_2, "llava_llama_2_obj_identifier": conv_llava_llama_2_obj_identifier, "mpt": conv_mpt, } if __name__ == "__main__": print(default_conversation.get_prompt())