# encoding=utf-8 from __future__ import unicode_literals from whoosh.analysis import RegexAnalyzer, LowercaseFilter, StopFilter, StemFilter from whoosh.analysis import Tokenizer, Token from whoosh.lang.porter import stem import jieba import re STOP_WORDS = frozenset(('a', 'an', 'and', 'are', 'as', 'at', 'be', 'by', 'can', 'for', 'from', 'have', 'if', 'in', 'is', 'it', 'may', 'not', 'of', 'on', 'or', 'tbd', 'that', 'the', 'this', 'to', 'us', 'we', 'when', 'will', 'with', 'yet', 'you', 'your', 'ηš„', 'δΊ†', 'ε’Œ')) accepted_chars = re.compile(r"[\u4E00-\u9FD5]+") class ChineseTokenizer(Tokenizer): def __call__(self, text, **kargs): words = jieba.tokenize(text, mode="search") token = Token() for (w, start_pos, stop_pos) in words: if not accepted_chars.match(w) and len(w) <= 1: continue token.original = token.text = w token.pos = start_pos token.startchar = start_pos token.endchar = stop_pos yield token def ChineseAnalyzer(stoplist=STOP_WORDS, minsize=1, stemfn=stem, cachesize=50000): return (ChineseTokenizer() | LowercaseFilter() | StopFilter(stoplist=stoplist, minsize=minsize) | StemFilter(stemfn=stemfn, ignore=None, cachesize=cachesize))