import gradio as gr from transformers import pipeline #trans = pipeline("automatic-speech-recognition", model = "facebook/wav2vec2-large-xlsr-53-spanish") clasificador = pipeline("text-classification", model = "pysentimiento/robertuito-sentiment-analysis") #def audio_a_texto(audio): # text = trans(audio)["text"] # return text def texto_a_sentimiento(text): return clasificador(text)[0]["label"] demo = gr.Blocks() with demo: gr.Markdown("Demo para workshop Campus 42 Fundación Telefónica") with gr.Tabs(): #with gr.TabItem("Transcribe audio en español"): # with gr.Row(): # audio = gr.Audio(source="microphone", type="filepath") # transcripcion = gr.Textbox() # b1 = gr.Button("Transcribe porfa") with gr.TabItem("Análisis de sentimiento en español"): with gr.Row(): texto = gr.Textbox() label = gr.Label() b2 = gr.Button("Analiza el sentimiento, por favor") #b1.click(audio_a_texto, inputs=audio, outputs=transcripcion) b2.click(texto_a_sentimiento, inputs=texto, outputs=label) demo.launch()