Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,147 +1,108 @@
|
|
1 |
-
import
|
2 |
-
import
|
3 |
-
from
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
"brand-github": "https://github.com/holoviz/panel",
|
14 |
-
"brand-twitter": "https://twitter.com/Panel_Org",
|
15 |
-
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
|
16 |
-
"message-circle": "https://discourse.holoviz.org/",
|
17 |
-
"brand-discord": "https://discord.gg/AXRHnJU6sP",
|
18 |
}
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
-
async def random_url(_):
|
22 |
-
pet = random.choice(["cat", "dog"])
|
23 |
-
api_url = f"https://api.the{pet}api.com/v1/images/search"
|
24 |
-
async with aiohttp.ClientSession() as session:
|
25 |
-
async with session.get(api_url) as resp:
|
26 |
-
return (await resp.json())[0]["url"]
|
27 |
-
|
28 |
-
|
29 |
-
@pn.cache
|
30 |
-
def load_processor_model(
|
31 |
-
processor_name: str, model_name: str
|
32 |
-
) -> Tuple[CLIPProcessor, CLIPModel]:
|
33 |
-
processor = CLIPProcessor.from_pretrained(processor_name)
|
34 |
-
model = CLIPModel.from_pretrained(model_name)
|
35 |
-
return processor, model
|
36 |
-
|
37 |
-
|
38 |
-
async def open_image_url(image_url: str) -> Image:
|
39 |
-
async with aiohttp.ClientSession() as session:
|
40 |
-
async with session.get(image_url) as resp:
|
41 |
-
return Image.open(io.BytesIO(await resp.read()))
|
42 |
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
|
47 |
)
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
)
|
53 |
-
outputs = model(**inputs)
|
54 |
-
logits_per_image = outputs.logits_per_image
|
55 |
-
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
|
56 |
-
return class_likelihoods[0]
|
57 |
-
|
58 |
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
img = pn.pane.Image(pil_img, height=400, align="center")
|
74 |
-
except Exception as e:
|
75 |
-
yield f"##### 😔 Something went wrong, please try a different URL!"
|
76 |
-
return
|
77 |
-
|
78 |
-
class_items = class_names.split(",")
|
79 |
-
class_likelihoods = get_similarity_scores(class_items, pil_img)
|
80 |
-
|
81 |
-
# build the results column
|
82 |
-
results = pn.Column("##### 🎉 Here are the results!", img)
|
83 |
-
|
84 |
-
for class_item, class_likelihood in zip(class_items, class_likelihoods):
|
85 |
-
row_label = pn.widgets.StaticText(
|
86 |
-
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
|
87 |
-
)
|
88 |
-
row_bar = pn.indicators.Progress(
|
89 |
-
value=int(class_likelihood * 100),
|
90 |
-
sizing_mode="stretch_width",
|
91 |
-
bar_color="secondary",
|
92 |
-
margin=(0, 10),
|
93 |
-
design=pn.theme.Material,
|
94 |
-
)
|
95 |
-
results.append(pn.Column(row_label, row_bar))
|
96 |
-
yield results
|
97 |
-
finally:
|
98 |
-
main.disabled = False
|
99 |
|
|
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
value=pn.bind(random_url, randomize_url),
|
107 |
-
)
|
108 |
-
class_names = pn.widgets.TextInput(
|
109 |
-
name="Comma separated class names",
|
110 |
-
placeholder="Enter possible class names, e.g. cat, dog",
|
111 |
-
value="cat, dog, parrot",
|
112 |
-
)
|
113 |
|
114 |
-
|
115 |
-
"##### 😊 Click randomize or paste a URL to start classifying!",
|
116 |
-
pn.Row(image_url, randomize_url),
|
117 |
-
class_names,
|
118 |
-
)
|
119 |
|
120 |
-
# add interactivity
|
121 |
-
interactive_result = pn.panel(
|
122 |
-
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
|
123 |
-
height=600,
|
124 |
-
)
|
125 |
-
|
126 |
-
# add footer
|
127 |
-
footer_row = pn.Row(pn.Spacer(), align="center")
|
128 |
-
for icon, url in ICON_URLS.items():
|
129 |
-
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
|
130 |
-
href_button.js_on_click(code=f"window.open('{url}')")
|
131 |
-
footer_row.append(href_button)
|
132 |
-
footer_row.append(pn.Spacer())
|
133 |
-
|
134 |
-
# create dashboard
|
135 |
-
main = pn.WidgetBox(
|
136 |
-
input_widgets,
|
137 |
-
interactive_result,
|
138 |
-
footer_row,
|
139 |
-
)
|
140 |
|
141 |
-
|
142 |
-
|
143 |
-
title=title,
|
144 |
-
main=main,
|
145 |
-
main_max_width="min(50%, 698px)",
|
146 |
-
header_background="#F08080",
|
147 |
-
).servable(title=title)
|
|
|
1 |
+
import dash
|
2 |
+
from dash import dcc, html
|
3 |
+
from dash.dependencies import Input, Output
|
4 |
+
import plotly.express as px
|
5 |
+
import pandas as pd
|
6 |
+
|
7 |
+
|
8 |
+
layers = ["conv2d5", "conv2d6", "conv2d7", "conv2d8", "conv2d9", "linear1", "linear2"]
|
9 |
+
color_dict = {
|
10 |
+
"ClassifierA_Cr203_C6": "#B3262A",
|
11 |
+
"ClassifierA_test_stim": "#2f559a",
|
12 |
+
"ClassifierA_test_unstim": "#5AADC5",
|
|
|
|
|
|
|
|
|
|
|
13 |
}
|
14 |
|
15 |
+
# Initialize Dash app
|
16 |
+
app = dash.Dash(__name__)
|
17 |
+
|
18 |
+
# App layout
|
19 |
+
app.layout = html.Div(
|
20 |
+
[
|
21 |
+
html.Div(
|
22 |
+
id="plot-container",
|
23 |
+
children=[
|
24 |
+
html.P(
|
25 |
+
children=[
|
26 |
+
"The original report can be accessed through this ",
|
27 |
+
html.A(
|
28 |
+
"BioRxiv Link",
|
29 |
+
href="https://www.biorxiv.org/content/10.1101/2023.06.01.542416v1.full.pdf",
|
30 |
+
target="_blank",
|
31 |
+
),
|
32 |
+
" and the data through this ",
|
33 |
+
html.A(
|
34 |
+
"GitHub repository",
|
35 |
+
href="https://github.com/MannLabs/SPARCS_pub_figures",
|
36 |
+
target="_blank",
|
37 |
+
),
|
38 |
+
],
|
39 |
+
id="initial-announcement",
|
40 |
+
),
|
41 |
+
html.P(
|
42 |
+
"Please select a layer to view from the dropdown.",
|
43 |
+
id="initial-message",
|
44 |
+
),
|
45 |
+
],
|
46 |
+
),
|
47 |
+
dcc.Dropdown(
|
48 |
+
id="layer-dropdown",
|
49 |
+
options=[{"label": layer, "value": layer} for layer in layers],
|
50 |
+
value=layers[0],
|
51 |
+
),
|
52 |
+
dcc.Graph(id="umap-plot"),
|
53 |
+
]
|
54 |
+
)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
# Callback to update the plot based on dropdown selection
|
58 |
+
@app.callback(Output("umap-plot", "figure"), [Input("layer-dropdown", "value")])
|
59 |
+
def update_plot(selected_layer):
|
60 |
|
61 |
+
input_path = (
|
62 |
+
f"data/classifier_1_Test_Data/UMAP_data/Raw_data_UMAP_{selected_layer}.csv"
|
|
|
63 |
)
|
64 |
+
df_train_umap = pd.read_csv(input_path)
|
65 |
+
|
66 |
+
fig = px.scatter(
|
67 |
+
df_train_umap.sample(frac=1, random_state=19),
|
68 |
+
x="UMAP_1",
|
69 |
+
y="UMAP_2",
|
70 |
+
color="class_label",
|
71 |
+
color_discrete_map=color_dict,
|
72 |
+
title=f"UMAP Test Data Labels - {selected_layer}",
|
73 |
+
)
|
74 |
+
fig.update_traces(
|
75 |
+
marker=dict(size=4, opacity=1, line=dict(width=0)),
|
76 |
+
selector=dict(mode="markers"),
|
77 |
)
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
+
# Update layout to have equal aspect ratio
|
80 |
+
fig.update_layout(
|
81 |
+
xaxis=dict(
|
82 |
+
scaleanchor="y",
|
83 |
+
scaleratio=1,
|
84 |
+
dtick=2,
|
85 |
+
),
|
86 |
+
yaxis=dict(
|
87 |
+
scaleanchor="x",
|
88 |
+
scaleratio=1,
|
89 |
+
dtick=2,
|
90 |
+
),
|
91 |
+
legend=dict(orientation="h", yanchor="bottom", y=1.02, xanchor="right", x=1),
|
92 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
+
# Set a constant range for both axes
|
95 |
+
umap_min = min(df_train_umap["UMAP_1"].min(), df_train_umap["UMAP_2"].min())
|
96 |
+
umap_max = max(df_train_umap["UMAP_1"].max(), df_train_umap["UMAP_2"].max())
|
97 |
|
98 |
+
x_range = [umap_min - 2, umap_max + 2]
|
99 |
+
# y_range = [umap_min - 2, umap_max + 2]
|
100 |
|
101 |
+
fig.update_xaxes(range=x_range, constrain="domain")
|
102 |
+
# fig.update_yaxes(range=y_range, scaleanchor="x", scaleratio=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
+
return fig
|
|
|
|
|
|
|
|
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
if __name__ == "__main__":
|
108 |
+
app.run_server(debug=True)
|
|
|
|
|
|
|
|
|
|