Spaces:
Sleeping
Sleeping
feat: Split text into semantic chunks and save as parquet file
Browse files
dale_retriver_agent.ipynb
CHANGED
@@ -2,30 +2,33 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
-
"
|
10 |
-
"
|
11 |
-
"
|
12 |
-
"
|
13 |
-
"
|
14 |
-
" model_name=\"BAAI/bge-m3\",\n",
|
15 |
-
")\n",
|
16 |
-
"\n",
|
17 |
-
"store = LocalFileStore(\"./.cache/embeddings\")\n",
|
18 |
-
"\n",
|
19 |
-
"embedder = CacheBackedEmbeddings.from_bytes_store(\n",
|
20 |
-
" underlying_embedder, store, namespace=underlying_embedder.model_name\n",
|
21 |
-
")"
|
22 |
]
|
23 |
},
|
24 |
{
|
25 |
"cell_type": "code",
|
26 |
-
"execution_count":
|
27 |
"metadata": {},
|
28 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
"source": [
|
30 |
"from langchain_text_splitters import RecursiveCharacterTextSplitter, Language\n",
|
31 |
"\n",
|
@@ -35,36 +38,83 @@
|
|
35 |
" ),\n",
|
36 |
" chunk_size=4096,\n",
|
37 |
" keep_separator=True,\n",
|
38 |
-
")"
|
|
|
|
|
|
|
39 |
]
|
40 |
},
|
41 |
{
|
42 |
"cell_type": "code",
|
43 |
-
"execution_count":
|
44 |
"metadata": {},
|
45 |
"outputs": [
|
46 |
{
|
47 |
"data": {
|
48 |
"text/plain": [
|
49 |
-
"
|
50 |
]
|
51 |
},
|
52 |
-
"execution_count":
|
53 |
"metadata": {},
|
54 |
"output_type": "execute_result"
|
55 |
}
|
56 |
],
|
57 |
"source": [
|
58 |
-
"
|
59 |
-
"
|
60 |
-
"
|
61 |
-
"
|
62 |
-
"
|
|
|
|
|
|
|
|
|
63 |
"\n",
|
|
|
|
|
|
|
|
|
|
|
64 |
"splitted_text = text_splitter.split_text(text)\n",
|
65 |
"len(splitted_text)"
|
66 |
]
|
67 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
{
|
69 |
"cell_type": "code",
|
70 |
"execution_count": 29,
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
9 |
+
"text = \"\"\n",
|
10 |
+
"with open(\n",
|
11 |
+
" \"./raw_data/dale_carnegie/how_to_win_friends_and_influence_people.txt\", \"r\"\n",
|
12 |
+
") as f:\n",
|
13 |
+
" text = f.read()"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
]
|
15 |
},
|
16 |
{
|
17 |
"cell_type": "code",
|
18 |
+
"execution_count": 4,
|
19 |
"metadata": {},
|
20 |
+
"outputs": [
|
21 |
+
{
|
22 |
+
"data": {
|
23 |
+
"text/plain": [
|
24 |
+
"139"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
"execution_count": 4,
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "execute_result"
|
30 |
+
}
|
31 |
+
],
|
32 |
"source": [
|
33 |
"from langchain_text_splitters import RecursiveCharacterTextSplitter, Language\n",
|
34 |
"\n",
|
|
|
38 |
" ),\n",
|
39 |
" chunk_size=4096,\n",
|
40 |
" keep_separator=True,\n",
|
41 |
+
")\n",
|
42 |
+
"\n",
|
43 |
+
"splitted_text = text_splitter.split_text(text)\n",
|
44 |
+
"len(splitted_text)"
|
45 |
]
|
46 |
},
|
47 |
{
|
48 |
"cell_type": "code",
|
49 |
+
"execution_count": 10,
|
50 |
"metadata": {},
|
51 |
"outputs": [
|
52 |
{
|
53 |
"data": {
|
54 |
"text/plain": [
|
55 |
+
"207"
|
56 |
]
|
57 |
},
|
58 |
+
"execution_count": 10,
|
59 |
"metadata": {},
|
60 |
"output_type": "execute_result"
|
61 |
}
|
62 |
],
|
63 |
"source": [
|
64 |
+
"# Semantic Splitting\n",
|
65 |
+
"from langchain.storage import LocalFileStore\n",
|
66 |
+
"from langchain.embeddings.cache import CacheBackedEmbeddings\n",
|
67 |
+
"from langchain_experimental.text_splitter import SemanticChunker\n",
|
68 |
+
"from langchain_openai.embeddings import OpenAIEmbeddings\n",
|
69 |
+
"\n",
|
70 |
+
"underlying_embedder = OpenAIEmbeddings(model=\"text-embedding-3-small\")\n",
|
71 |
+
"\n",
|
72 |
+
"store = LocalFileStore(\"./.cache/embeddings\")\n",
|
73 |
"\n",
|
74 |
+
"embedder = CacheBackedEmbeddings.from_bytes_store(\n",
|
75 |
+
" underlying_embedder, store, namespace=underlying_embedder.model\n",
|
76 |
+
")\n",
|
77 |
+
"\n",
|
78 |
+
"text_splitter = SemanticChunker(embedder)\n",
|
79 |
"splitted_text = text_splitter.split_text(text)\n",
|
80 |
"len(splitted_text)"
|
81 |
]
|
82 |
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": 13,
|
86 |
+
"metadata": {},
|
87 |
+
"outputs": [],
|
88 |
+
"source": [
|
89 |
+
"import pandas as pd\n",
|
90 |
+
"\n",
|
91 |
+
"df = pd.DataFrame(splitted_text, columns=[\"text\"])\n",
|
92 |
+
"df.to_parquet(\n",
|
93 |
+
" \"./raw_data/dale_carnegie/how_to_win_friends_and_influence_people.parquet\"\n",
|
94 |
+
")"
|
95 |
+
]
|
96 |
+
},
|
97 |
+
{
|
98 |
+
"cell_type": "code",
|
99 |
+
"execution_count": 5,
|
100 |
+
"metadata": {},
|
101 |
+
"outputs": [],
|
102 |
+
"source": [
|
103 |
+
"from langchain.storage import LocalFileStore\n",
|
104 |
+
"from langchain.embeddings.cache import CacheBackedEmbeddings\n",
|
105 |
+
"from langchain_community.embeddings import HuggingFaceBgeEmbeddings\n",
|
106 |
+
"\n",
|
107 |
+
"underlying_embedder = HuggingFaceBgeEmbeddings(\n",
|
108 |
+
" model_name=\"BAAI/bge-m3\",\n",
|
109 |
+
")\n",
|
110 |
+
"\n",
|
111 |
+
"store = LocalFileStore(\"./.cache/embeddings\")\n",
|
112 |
+
"\n",
|
113 |
+
"embedder = CacheBackedEmbeddings.from_bytes_store(\n",
|
114 |
+
" underlying_embedder, store, namespace=underlying_embedder.model_name\n",
|
115 |
+
")"
|
116 |
+
]
|
117 |
+
},
|
118 |
{
|
119 |
"cell_type": "code",
|
120 |
"execution_count": 29,
|
raw_data/dale_carnegie/how_to_win_friends_and_influence_people.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:75b5718819389b15bf54e5edb329f888cf0b9f2dd69e418b29e7eedee8747c74
|
3 |
+
size 259681
|