File size: 5,062 Bytes
0cb616f
3a6953c
 
 
0cb616f
3a6953c
 
 
c18a289
9b4fa71
3a6953c
 
 
c18a289
 
 
3a6953c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b4fa71
 
 
 
 
3a6953c
9b4fa71
 
3a6953c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb616f
 
3a6953c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb616f
 
 
 
 
 
 
 
3a6953c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cb616f
 
 
 
 
 
 
 
 
 
 
 
 
 
3a6953c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd5f59c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import spaces  # type: ignore
import os
import uuid
from PIL import Image
import gradio as gr
import numpy as np
import random
import torch
from diffusers import FluxPipeline
from sd_embed.embedding_funcs import get_weighted_text_embeddings_flux1

dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = FluxPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-dev",
    torch_dtype=dtype,
)
pipe.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048


@spaces.GPU(duration=90)
def infer(
    prompt: str,
    seed=42,
    randomize_seed=False,
    width=1024,
    height=1024,
    guidance_scale=5.0,
    num_inference_steps=28,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    generator = torch.Generator().manual_seed(seed)

    prompt_embeds, pooled_prompt_embeds = get_weighted_text_embeddings_flux1(
        pipe=pipe, prompt=prompt
    )

    image = pipe(
        prompt_embeds=prompt_embeds,
        pooled_prompt_embeds=pooled_prompt_embeds,
        width=width,
        height=height,
        num_inference_steps=num_inference_steps,
        generator=generator,
        guidance_scale=guidance_scale,
    ).images[0]

    assert isinstance(
        image, Image.Image
    ), "The output is not an instance of Image.Image"

    filepath = os.path.join("images", "{uuid}.png".format(uuid=str(uuid.uuid4().hex)))
    image.save(filepath)

    return (
        image,
        gr.DownloadButton(
            label="Download PNG", value=filepath, size="sm", visible=True
        ),
        seed,
    )


examples = [
    "a cat holding a sign that says flux.1 is great",
    "an old man holding a sign that says Increase Zero-GPU Limit",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 520px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""# FLUX.1 
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)  
[[non-commercial license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md)] [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-dev)]
        """)

        with gr.Row(equal_height=False):
            with gr.Column():
                prompt = gr.TextArea(
                    label="Prompt",
                    show_label=False,
                    lines=3,
                    placeholder="Enter your prompt",
                    container=False,
                )

            run_button = gr.Button("Run", variant="primary", scale=0)

        result = gr.Image(
            format="webp",
            type="pil",
            label="Result",
            show_label=False,
            show_download_button=False,
            show_share_button=False,
        )
        download = gr.DownloadButton(size="sm", visible=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=832,
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1216,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=0,
                    maximum=15,
                    step=0.1,
                    value=3.5,
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=28,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, download, seed],
            cache_examples="lazy",
        )

    gr.on(
        triggers=[run_button.click],
        fn=lambda: gr.update(visible=False),
        outputs=download,
        api_name=False,
    )
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, download, seed],
    )

if __name__ == "__main__":
    os.makedirs("images", exist_ok=True)
    demo.queue(api_open=True).launch()