Spaces:
Running
Running
File size: 5,264 Bytes
62b1ca5 d54a92e 62b1ca5 d3c75c1 62b1ca5 ee0f30d 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 d54a92e 62b1ca5 6e4adc1 62b1ca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
from dataset import ParallelTextReader
from torch.utils.data import DataLoader
from accelerate import find_executable_batch_size
from evaluate import load
from tqdm import tqdm
import torch
import json
import argparse
import numpy as np
import os
def get_dataloader(pred_path: str, gold_path: str, batch_size: int):
"""
Returns a dataloader for the given files.
"""
def collate_fn(batch):
return list(map(list, zip(*batch)))
reader = ParallelTextReader(pred_path=pred_path, gold_path=gold_path)
dataloader = DataLoader(
reader, batch_size=batch_size, collate_fn=collate_fn, num_workers=0
)
return dataloader
def eval_files(
pred_path: str,
gold_path: str,
bert_score_model: str,
starting_batch_size: int = 128,
output_path: str = None,
):
"""
Evaluates the given files.
"""
if torch.cuda.is_available():
device = "cuda:0"
print("We will use a GPU to calculate BertScore.")
else:
device = "cpu"
print(
f"We will use the CPU to calculate BertScore, this can be slow for large datasets."
)
dataloader = get_dataloader(pred_path, gold_path, starting_batch_size)
print("Loading sacrebleu...")
sacrebleu = load("sacrebleu")
print("Loading rouge...")
rouge = load("rouge")
print("Loading bleu...")
bleu = load("bleu")
print("Loading meteor...")
meteor = load("meteor")
print("Loading ter...")
ter = load("ter")
print("Loading BertScore...")
bert_score = load("bertscore")
with tqdm(total=len(dataloader.dataset), desc="Loading data...") as pbar:
for predictions, references in dataloader:
sacrebleu.add_batch(predictions=predictions, references=references)
rouge.add_batch(predictions=predictions, references=references)
bleu.add_batch(predictions=predictions, references=references)
meteor.add_batch(predictions=predictions, references=references)
ter.add_batch(predictions=predictions, references=references)
bert_score.add_batch(predictions=predictions, references=references)
pbar.update(len(predictions))
result_dictionary = {"path": pred_path}
print("Computing sacrebleu")
result_dictionary["sacrebleu"] = sacrebleu.compute()
print("Computing rouge score")
result_dictionary["rouge"] = rouge.compute(
use_aggregator=True, rouge_types=["rouge1", "rouge2", "rougeL", "rougeLsum"]
)
print("Computing bleu score")
result_dictionary["bleu"] = bleu.compute()
print("Computing meteor score")
result_dictionary["meteor"] = meteor.compute()
print("Computing ter score")
result_dictionary["ter"] = ter.compute()
@find_executable_batch_size(starting_batch_size=starting_batch_size)
def inference(batch_size):
nonlocal bert_score, bert_score_model
print(f"Computing bert score with batch size {batch_size} on {device}")
results = bert_score.compute(
model_type=bert_score_model,
batch_size=batch_size,
device=device,
use_fast_tokenizer=True,
)
results["precision"] = np.average(results["precision"])
results["recall"] = np.average(results["recall"])
results["f1"] = np.average(results["f1"])
return results
result_dictionary["bert_score"] = inference()
if output_path is not None:
if not os.path.exists(os.path.abspath(os.path.dirname(output_path))):
os.makedirs(os.path.abspath(os.path.dirname(output_path)))
with open(output_path, "w") as f:
json.dump(result_dictionary, f, indent=4)
print(f"Results: {json.dumps(result_dictionary,indent=4)}")
return result_dictionary
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="Run the translation evaluation experiments"
)
parser.add_argument(
"--pred_path",
type=str,
required=True,
help="Path to a txt file containing the predicted sentences.",
)
parser.add_argument(
"--gold_path",
type=str,
required=True,
help="Path to a txt file containing the gold sentences.",
)
parser.add_argument(
"--starting_batch_size",
type=int,
default=64,
help="Starting batch size for BertScore, we will automatically reduce it if we find an OOM error.",
)
parser.add_argument(
"--output_path",
type=str,
default=None,
help="Path to a json file to save the results. If not given, the results will be printed to the console.",
)
parser.add_argument(
"--bert_score_model",
type=str,
default="microsoft/deberta-xlarge-mnli",
help="Model to use for BertScore. See: https://github.com/huggingface/datasets/tree/master/metrics/bertscore"
"and https://github.com/Tiiiger/bert_score for more details.",
)
args = parser.parse_args()
eval_files(
pred_path=args.pred_path,
gold_path=args.gold_path,
starting_batch_size=args.starting_batch_size,
output_path=args.output_path,
bert_score_model=args.bert_score_model,
)
|