easy-translate / translate.py
Iker's picture
8 bits / 4 bits quantization, load any model, promoting.
d54a92e
raw
history blame
15 kB
import os
import math
import argparse
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import (
PreTrainedTokenizerBase,
DataCollatorForSeq2Seq,
)
from model import load_model_for_inference
from dataset import DatasetReader, count_lines
from accelerate import Accelerator, DistributedType, find_executable_batch_size
def encode_string(text):
return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t")
def get_dataloader(
accelerator: Accelerator,
filename: str,
tokenizer: PreTrainedTokenizerBase,
batch_size: int,
max_length: int,
prompt: str,
) -> DataLoader:
dataset = DatasetReader(filename, tokenizer, max_length, prompt)
if accelerator.distributed_type == DistributedType.TPU:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding="max_length",
max_length=max_length,
label_pad_token_id=tokenizer.pad_token_id,
return_tensors="pt",
)
else:
data_collator = DataCollatorForSeq2Seq(
tokenizer,
padding=True,
label_pad_token_id=tokenizer.pad_token_id,
# max_length=max_length, No need to set max_length here, we already truncate in the preprocess function
pad_to_multiple_of=8,
return_tensors="pt",
)
return DataLoader(
dataset,
batch_size=batch_size,
collate_fn=data_collator,
num_workers=0, # Disable multiprocessing
)
def main(
sentences_path: str,
output_path: str,
source_lang: str,
target_lang: str,
starting_batch_size: int,
model_name: str = "facebook/m2m100_1.2B",
lora_weights_name_or_path: str = None,
force_auto_device_map: bool = False,
precision: str = None,
max_length: int = 128,
num_beams: int = 4,
num_return_sequences: int = 1,
do_sample: bool = False,
temperature: float = 1.0,
top_k: int = 50,
top_p: float = 1.0,
keep_special_tokens: bool = False,
keep_tokenization_spaces: bool = False,
repetition_penalty: float = None,
prompt: str = None,
):
os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True)
accelerator = Accelerator()
if precision is None:
quantization = None
dtype = None
elif precision == "8" or precision == "4":
quantization = int(precision)
dtype = None
elif precision == "fp16":
quantization = None
dtype = "float16"
elif precision == "bf16":
quantization = None
dtype = "bfloat16"
elif precision == "32":
quantization = None
dtype = "float32"
else:
raise ValueError(
f"Precision {precision} not supported. Please choose between 8, 4, fp16, bf16, 32 or None."
)
model, tokenizer = load_model_for_inference(
weights_path=model_name,
quantization=quantization,
lora_weights_name_or_path=lora_weights_name_or_path,
torch_dtype=dtype,
force_auto_device_map=force_auto_device_map,
)
is_translation_model = hasattr(tokenizer, "lang_code_to_id")
if is_translation_model and (source_lang is None or target_lang is None):
raise ValueError(
f"The model you are using requires a source and target language. "
f"Please specify them with --source-lang and --target-lang. "
f"The supported languages are: {tokenizer.lang_code_to_id.keys()}"
)
if not is_translation_model and (
source_lang is not None or target_lang is not None
):
if prompt is None:
print(
"WARNING: You are using a model that does not support source and target languages parameters "
"but you specified them. You probably want to use m2m100/nllb200 for translation or "
"set --prompt to define the task for you model. "
)
else:
print(
"WARNING: You are using a model that does not support source and target languages parameters "
"but you specified them."
)
if prompt is not None and "%%SENTENCE%%" not in prompt:
raise ValueError(
f"The prompt must contain the %%SENTENCE%% token to indicate where the sentence should be inserted. "
f"Your prompt: {prompt}"
)
if is_translation_model:
try:
_ = tokenizer.lang_code_to_id[source_lang]
except KeyError:
raise KeyError(
f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
)
tokenizer.src_lang = source_lang
try:
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
except KeyError:
raise KeyError(
f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
)
gen_kwargs = {
"max_length": max_length,
"num_beams": num_beams,
"num_return_sequences": num_return_sequences,
"do_sample": do_sample,
"temperature": temperature,
"top_k": top_k,
"top_p": top_p,
}
if repetition_penalty is not None:
gen_kwargs["repetition_penalty"] = repetition_penalty
total_lines: int = count_lines(sentences_path)
if accelerator.is_main_process:
print(
f"** Translation **\n"
f"Input file: {sentences_path}\n"
f"Output file: {output_path}\n"
f"Source language: {source_lang}\n"
f"Target language: {target_lang}\n"
f"is_translation_model: {is_translation_model}\n"
f"Prompt: {prompt}\n"
f"Starting batch size: {starting_batch_size}\n"
f"Device: {str(accelerator.device).split(':')[0]}\n"
f"Num. Devices: {accelerator.num_processes}\n"
f"Distributed_type: {accelerator.distributed_type}\n"
f"Max length: {max_length}\n"
f"Quantization: {quantization}\n"
f"Precision: {dtype}\n"
f"Model: {model_name}\n"
f"LoRA weights: {lora_weights_name_or_path}\n"
f"Force auto device map: {force_auto_device_map}\n"
f"Keep special tokens: {keep_special_tokens}\n"
f"Keep tokenization spaces: {keep_tokenization_spaces}\n"
)
print("** Generation parameters **")
print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items()))
print("\n")
@find_executable_batch_size(starting_batch_size=starting_batch_size)
def inference(batch_size):
nonlocal model, tokenizer, sentences_path, max_length, output_path, lang_code_to_idx, gen_kwargs, precision, prompt, is_translation_model
print(f"Translating with batch size {batch_size}")
data_loader = get_dataloader(
accelerator=accelerator,
filename=sentences_path,
tokenizer=tokenizer,
batch_size=batch_size,
max_length=max_length,
prompt=prompt,
)
model, data_loader = accelerator.prepare(model, data_loader)
samples_seen: int = 0
with tqdm(
total=total_lines,
desc="Dataset translation",
leave=True,
ascii=True,
disable=(not accelerator.is_main_process),
) as pbar, open(output_path, "w", encoding="utf-8") as output_file:
with torch.no_grad():
for step, batch in enumerate(data_loader):
batch["input_ids"] = batch["input_ids"]
batch["attention_mask"] = batch["attention_mask"]
generated_tokens = accelerator.unwrap_model(model).generate(
**batch,
forced_bos_token_id=lang_code_to_idx
if is_translation_model
else None,
**gen_kwargs,
)
generated_tokens = accelerator.pad_across_processes(
generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
)
generated_tokens = (
accelerator.gather(generated_tokens).cpu().numpy()
)
tgt_text = tokenizer.batch_decode(
generated_tokens,
skip_special_tokens=not keep_special_tokens,
clean_up_tokenization_spaces=not keep_tokenization_spaces,
)
if accelerator.is_main_process:
if (
step
== math.ceil(
math.ceil(total_lines / batch_size)
/ accelerator.num_processes
)
- 1
):
tgt_text = tgt_text[
: (total_lines * num_return_sequences) - samples_seen
]
else:
samples_seen += len(tgt_text)
print(
"\n".join(
[encode_string(sentence) for sentence in tgt_text]
),
file=output_file,
)
pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"])
inference()
print(f"Translation done.\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Run the translation experiments")
parser.add_argument(
"--sentences_path",
type=str,
required=True,
help="Path to a txt file containing the sentences to translate. One sentence per line.",
)
parser.add_argument(
"--output_path",
type=str,
required=True,
help="Path to a txt file where the translated sentences will be written.",
)
parser.add_argument(
"--source_lang",
type=str,
default=None,
required=False,
help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
)
parser.add_argument(
"--target_lang",
type=str,
default=None,
required=False,
help="Source language id. See: supported_languages.md. Required for m2m100 and nllb200",
)
parser.add_argument(
"--starting_batch_size",
type=int,
default=128,
help="Starting batch size, we will automatically reduce it if we find an OOM error."
"If you use multiple devices, we will divide this number by the number of devices.",
)
parser.add_argument(
"--model_name",
type=str,
default="facebook/m2m100_1.2B",
help="Path to the model to use. See: https://huggingface.co/models",
)
parser.add_argument(
"--lora_weights_name_or_path",
type=str,
default=None,
help="If the model uses LoRA weights, path to those weights. See: https://github.com/huggingface/peft",
)
parser.add_argument(
"--force_auto_device_map",
action="store_true",
help=" Whether to force the use of the auto device map. If set to True, "
"the model will be split across GPUs and CPU to fit the model in memory. "
"If set to False, a full copy of the model will be loaded into each GPU. Defaults to False.",
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help="Maximum number of tokens in the source sentence and generated sentence. "
"Increase this value to translate longer sentences, at the cost of increasing memory usage.",
)
parser.add_argument(
"--num_beams",
type=int,
default=5,
help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory",
)
parser.add_argument(
"--num_return_sequences",
type=int,
default=1,
help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).",
)
parser.add_argument(
"--precision",
type=str,
default=None,
choices=["bf16", "fp16", "32", "4", "8"],
help="Precision of the model. bf16, fp16 or 32, 8 , 4 "
"(4bits/8bits quantification, requires bitsandbytes library: https://github.com/TimDettmers/bitsandbytes). "
"If None, we will use the torch.dtype of the model weights.",
)
parser.add_argument(
"--do_sample",
action="store_true",
help="Use sampling instead of beam search.",
)
parser.add_argument(
"--temperature",
type=float,
default=0.8,
help="Temperature for sampling, value used only if do_sample is True.",
)
parser.add_argument(
"--top_k",
type=int,
default=100,
help="If do_sample is True, will sample from the top k most likely tokens.",
)
parser.add_argument(
"--top_p",
type=float,
default=0.75,
help="If do_sample is True, will sample from the top k most likely tokens.",
)
parser.add_argument(
"--keep_special_tokens",
action="store_true",
help="Keep special tokens in the decoded text.",
)
parser.add_argument(
"--keep_tokenization_spaces",
action="store_true",
help="Do not clean spaces in the decoded text.",
)
parser.add_argument(
"--repetition_penalty",
type=float,
default=None,
help="Repetition penalty.",
)
parser.add_argument(
"--prompt",
type=str,
default=None,
help="Prompt to use for generation. "
"It must include the special token %%SENTENCE%% which will be replaced by the sentence to translate.",
)
args = parser.parse_args()
main(
sentences_path=args.sentences_path,
output_path=args.output_path,
source_lang=args.source_lang,
target_lang=args.target_lang,
starting_batch_size=args.starting_batch_size,
model_name=args.model_name,
max_length=args.max_length,
num_beams=args.num_beams,
num_return_sequences=args.num_return_sequences,
precision=args.precision,
do_sample=args.do_sample,
temperature=args.temperature,
top_k=args.top_k,
top_p=args.top_p,
keep_special_tokens=args.keep_special_tokens,
keep_tokenization_spaces=args.keep_tokenization_spaces,
repetition_penalty=args.repetition_penalty,
prompt=args.prompt,
)