Spaces:
Running
Running
from torch.utils.data import IterableDataset | |
def count_lines(input_path: str) -> int: | |
with open(input_path, "r", encoding="utf8") as f: | |
return sum(1 for _ in f) | |
class DatasetReader(IterableDataset): | |
def __init__(self, filename, tokenizer, max_length=128): | |
self.filename = filename | |
self.tokenizer = tokenizer | |
self.max_length = max_length | |
self.current_line = 0 | |
self.total_lines = count_lines(filename) | |
print(f"{self.total_lines} lines in {filename}") | |
def preprocess(self, text: str): | |
self.current_line += 1 | |
text = text.rstrip().strip() | |
if len(text) == 0: | |
print(f"Warning: empty sentence at line {self.current_line}") | |
return self.tokenizer( | |
text, | |
padding=False, | |
truncation=True, | |
max_length=self.max_length, | |
return_tensors=None, | |
) | |
def __iter__(self): | |
file_itr = open(self.filename, "r", encoding="utf8") | |
mapped_itr = map(self.preprocess, file_itr) | |
return mapped_itr | |
def __len__(self): | |
return self.total_lines | |
class ParallelTextReader(IterableDataset): | |
def __init__(self, pred_path: str, gold_path: str): | |
self.pred_path = pred_path | |
self.gold_path = gold_path | |
pref_filename_lines = count_lines(pred_path) | |
gold_path_lines = count_lines(gold_path) | |
assert pref_filename_lines == gold_path_lines, ( | |
f"Lines in {pred_path} and {gold_path} do not match " | |
f"{pref_filename_lines} vs {gold_path_lines}" | |
) | |
self.num_sentences = gold_path_lines | |
self.current_line = 0 | |
def preprocess(self, pred: str, gold: str): | |
self.current_line += 1 | |
pred = pred.rstrip().strip() | |
gold = gold.rstrip().strip() | |
if len(pred) == 0: | |
print(f"Warning: Pred empty sentence at line {self.current_line}") | |
if len(gold) == 0: | |
print(f"Warning: Gold empty sentence at line {self.current_line}") | |
return pred, [gold] | |
def __iter__(self): | |
pred_itr = open(self.pred_path, "r", encoding="utf8") | |
gold_itr = open(self.gold_path, "r", encoding="utf8") | |
mapped_itr = map(self.preprocess, pred_itr, gold_itr) | |
return mapped_itr | |
def __len__(self): | |
return self.num_sentences | |