Spaces:
Running
Running
Initial commit
Browse files- .gitignore +5 -0
- dataset.py +56 -0
- translate.py +160 -0
.gitignore
CHANGED
@@ -122,3 +122,8 @@ dmypy.json
|
|
122 |
|
123 |
# Pyre type checker
|
124 |
.pyre/
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
# Pyre type checker
|
124 |
.pyre/
|
125 |
+
|
126 |
+
# For IntelliJ
|
127 |
+
.idea/
|
128 |
+
|
129 |
+
debug/
|
dataset.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, TextIO, Dict, Optional
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import IterableDataset
|
4 |
+
from torch.utils.data.dataset import T_co
|
5 |
+
|
6 |
+
|
7 |
+
def blocks(files, size=65536):
|
8 |
+
while True:
|
9 |
+
b = files.read(size)
|
10 |
+
if not b:
|
11 |
+
break
|
12 |
+
yield b
|
13 |
+
|
14 |
+
|
15 |
+
def count_lines(input_path: str) -> int:
|
16 |
+
with open(input_path, "r", encoding="utf8") as f:
|
17 |
+
return sum(bl.count("\n") for bl in blocks(f))
|
18 |
+
|
19 |
+
|
20 |
+
class DatasetReader(IterableDataset):
|
21 |
+
def __init__(self, filename, tokenizer, max_length=128):
|
22 |
+
self.filename = filename
|
23 |
+
self.tokenizer = tokenizer
|
24 |
+
self.max_length = max_length
|
25 |
+
|
26 |
+
def preprocess(self, text: str):
|
27 |
+
return self.tokenizer(
|
28 |
+
text.rstrip().strip(),
|
29 |
+
padding="max_length",
|
30 |
+
truncation=True,
|
31 |
+
max_length=self.max_length,
|
32 |
+
return_tensors="pt",
|
33 |
+
)
|
34 |
+
|
35 |
+
def __iter__(self):
|
36 |
+
file_itr = open(self.filename, "r")
|
37 |
+
mapped_itr = map(self.preprocess, file_itr)
|
38 |
+
return mapped_itr
|
39 |
+
|
40 |
+
|
41 |
+
def collate_function(batch: List[T_co]) -> Dict[str, torch.Tensor]:
|
42 |
+
return {
|
43 |
+
"input_ids": torch.stack([item["input_ids"][0] for item in batch]),
|
44 |
+
"attention_mask": torch.stack([item["attention_mask"][0] for item in batch]),
|
45 |
+
}
|
46 |
+
|
47 |
+
|
48 |
+
def get_dataloader(
|
49 |
+
filename: str, tokenizer: str, batch_size: int, max_length: int
|
50 |
+
) -> torch.utils.data.DataLoader:
|
51 |
+
dataset = DatasetReader(filename, tokenizer, max_length)
|
52 |
+
return torch.utils.data.DataLoader(
|
53 |
+
dataset,
|
54 |
+
batch_size=batch_size,
|
55 |
+
collate_fn=collate_function,
|
56 |
+
)
|
translate.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
2 |
+
from tqdm import tqdm
|
3 |
+
from typing import TextIO, List
|
4 |
+
import argparse
|
5 |
+
import torch
|
6 |
+
from dataset import get_dataloader, count_lines
|
7 |
+
import os
|
8 |
+
|
9 |
+
|
10 |
+
def main(
|
11 |
+
sentences_path,
|
12 |
+
output_path,
|
13 |
+
source_lang,
|
14 |
+
target_lang,
|
15 |
+
batch_size,
|
16 |
+
model_name: str = "facebook/m2m100_1.2B",
|
17 |
+
tensorrt: bool = False,
|
18 |
+
precision: int = 32,
|
19 |
+
max_length: int = 128,
|
20 |
+
):
|
21 |
+
|
22 |
+
if not os.path.exists(os.path.dirname(output_path)):
|
23 |
+
os.makedirs(os.path.dirname(output_path))
|
24 |
+
|
25 |
+
print("Loading tokenizer...")
|
26 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
27 |
+
print("Loading model...")
|
28 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
29 |
+
print(f"Model loaded.\n")
|
30 |
+
|
31 |
+
tokenizer.src_lang = source_lang
|
32 |
+
lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
|
33 |
+
|
34 |
+
model.eval()
|
35 |
+
|
36 |
+
total_lines: int = count_lines(sentences_path)
|
37 |
+
print(f"We will translate {total_lines} lines.")
|
38 |
+
data_loader = get_dataloader(
|
39 |
+
filename=sentences_path,
|
40 |
+
tokenizer=tokenizer,
|
41 |
+
batch_size=batch_size,
|
42 |
+
max_length=128,
|
43 |
+
)
|
44 |
+
|
45 |
+
if precision == 16:
|
46 |
+
dtype = torch.float16
|
47 |
+
elif precision == 32:
|
48 |
+
dtype = torch.float32
|
49 |
+
elif precision == 64:
|
50 |
+
dtype = torch.float64
|
51 |
+
else:
|
52 |
+
raise ValueError("Precision must be 16, 32 or 64.")
|
53 |
+
|
54 |
+
if tensorrt:
|
55 |
+
import torch_tensorrt
|
56 |
+
|
57 |
+
traced_model = torch.jit.trace(
|
58 |
+
model, [torch.randn((batch_size, max_length)).to("cuda")]
|
59 |
+
)
|
60 |
+
model = torch_tensorrt.compile(
|
61 |
+
traced_model,
|
62 |
+
inputs=[torch_tensorrt.Input((batch_size, max_length), dtype=dtype)],
|
63 |
+
enabled_precisions={dtype},
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
if torch.cuda.is_available():
|
67 |
+
model.to("cuda", dtype=dtype)
|
68 |
+
else:
|
69 |
+
model.to("cpu", dtype=dtype)
|
70 |
+
print("CUDA not available. Using CPU. This will be slow.")
|
71 |
+
|
72 |
+
with tqdm(total=total_lines, desc="Dataset translation") as pbar, open(
|
73 |
+
output_path, "w+", encoding="utf-8"
|
74 |
+
) as output_file:
|
75 |
+
with torch.no_grad():
|
76 |
+
for batch in data_loader:
|
77 |
+
generated_tokens = model.generate(
|
78 |
+
**batch, forced_bos_token_id=lang_code_to_idx
|
79 |
+
)
|
80 |
+
tgt_text = tokenizer.batch_decode(
|
81 |
+
generated_tokens.cpu(), skip_special_tokens=True
|
82 |
+
)
|
83 |
+
|
84 |
+
print("\n".join(tgt_text), file=output_file)
|
85 |
+
|
86 |
+
pbar.update(len(tgt_text))
|
87 |
+
|
88 |
+
print(f"Translation done.\n")
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
parser = argparse.ArgumentParser(description="Run the translation experiments")
|
93 |
+
parser.add_argument(
|
94 |
+
"--sentences_path",
|
95 |
+
type=str,
|
96 |
+
required=True,
|
97 |
+
help="Path to a txt file containing the sentences to translate. One sentence per line.",
|
98 |
+
)
|
99 |
+
|
100 |
+
parser.add_argument(
|
101 |
+
"--output_path",
|
102 |
+
type=str,
|
103 |
+
required=True,
|
104 |
+
help="Path to a txt file where the translated sentences will be written.",
|
105 |
+
)
|
106 |
+
|
107 |
+
parser.add_argument(
|
108 |
+
"--source_lang",
|
109 |
+
type=str,
|
110 |
+
required=True,
|
111 |
+
help="Source language id. See: https://huggingface.co/facebook/m2m100_1.2B",
|
112 |
+
)
|
113 |
+
|
114 |
+
parser.add_argument(
|
115 |
+
"--target_lang",
|
116 |
+
type=str,
|
117 |
+
required=True,
|
118 |
+
help="Target language id. See: https://huggingface.co/facebook/m2m100_1.2B",
|
119 |
+
)
|
120 |
+
|
121 |
+
parser.add_argument(
|
122 |
+
"--batch_size",
|
123 |
+
type=int,
|
124 |
+
default=8,
|
125 |
+
help="Batch size",
|
126 |
+
)
|
127 |
+
|
128 |
+
parser.add_argument(
|
129 |
+
"--model_name",
|
130 |
+
type=str,
|
131 |
+
default="facebook/m2m100_1.2B",
|
132 |
+
help="Path to the model to use. See: https://huggingface.co/models",
|
133 |
+
)
|
134 |
+
|
135 |
+
parser.add_argument(
|
136 |
+
"--precision",
|
137 |
+
type=int,
|
138 |
+
default=32,
|
139 |
+
choices=[16, 32, 64],
|
140 |
+
help="Precision of the model. 16, 32 or 64.",
|
141 |
+
)
|
142 |
+
|
143 |
+
parser.add_argument(
|
144 |
+
"--tensorrt",
|
145 |
+
action="store_true",
|
146 |
+
help="Use TensorRT to compile the model.",
|
147 |
+
)
|
148 |
+
|
149 |
+
args = parser.parse_args()
|
150 |
+
|
151 |
+
main(
|
152 |
+
sentences_path=args.sentences_path,
|
153 |
+
output_path=args.output_path,
|
154 |
+
source_lang=args.source_lang,
|
155 |
+
target_lang=args.target_lang,
|
156 |
+
batch_size=args.batch_size,
|
157 |
+
model_name=args.model_name,
|
158 |
+
precision=args.precision,
|
159 |
+
tensorrt=args.tensorrt,
|
160 |
+
)
|