Twitter License Transformers Accelerate Author

Easy-translate is a script for translating large text files in your machine using the [M2M100 models](https://arxiv.org/pdf/2010.11125.pdf) from Facebook/Meta AI. M2M100 is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation. It was introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository. The model that can directly translate between the 9,900 directions of 100 languages. Easy-Translate is built on top of 🤗HuggingFace's [Transformers](https://huggingface.co/docs/transformers/index) and 🤗HuggingFace's [Accelerate](https://huggingface.co/docs/accelerate/index) library. We support: * CPU / GPU / multi-GPU / TPU acceleration * BF16 / FP16 / FB32 precision. * Automatic batch size finder: Forget CUDA OOM errors. Set an initial batch size, if it doesn't fit, we will automatically adjust it. * Sharded Data Parallel to load huge models sharded on multiple GPUs (See: https://huggingface.co/docs/accelerate/fsdp). Test the 🔌 Online Demo here: https://huggingface.co/spaces/Iker/Translate-100-languages ## Supported languages See the [Supported languages table](supported_languages.md) for a table of the supported languages and their ids. **List of supported languages:** Afrikaans, Amharic, Arabic, Asturian, Azerbaijani, Bashkir, Belarusian, Bulgarian, Bengali, Breton, Bosnian, Catalan, Cebuano, Czech, Welsh, Danish, German, Greeek, English, Spanish, Estonian, Persian, Fulah, Finnish, French, WesternFrisian, Irish, Gaelic, Galician, Gujarati, Hausa, Hebrew, Hindi, Croatian, Haitian, Hungarian, Armenian, Indonesian, Igbo, Iloko, Icelandic, Italian, Japanese, Javanese, Georgian, Kazakh, CentralKhmer, Kannada, Korean, Luxembourgish, Ganda, Lingala, Lao, Lithuanian, Latvian, Malagasy, Macedonian, Malayalam, Mongolian, Marathi, Malay, Burmese, Nepali, Dutch, Norwegian, NorthernSotho, Occitan, Oriya, Panjabi, Polish, Pushto, Portuguese, Romanian, Russian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Albanian, Serbian, Swati, Sundanese, Swedish, Swahili, Tamil, Thai, Tagalog, Tswana, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Wolof, Xhosa, Yiddish, Yoruba, Chinese, Zulu ## Supported Models * **Facebook/m2m100_418M**: https://huggingface.co/facebook/m2m100_418M * **Facebook/m2m100_1.2B**: https://huggingface.co/facebook/m2m100_1.2B * **Facebook/m2m100_12B**: https://huggingface.co/facebook/m2m100-12B-avg-5-ckpt * Any other m2m100 model from HuggingFace's Hub: https://huggingface.co/models?search=m2m100 ## Requirements: ``` Pytorch >= 1.10.0 See: https://pytorch.org/get-started/locally/ Accelerate >= 0.7.1 pip install --upgrade accelerate HuggingFace Transformers pip install --upgrade transformers ``` ## Translate a file Run `python translate.py -h` for more info. #### Using a single CPU / GPU: ```bash accelerate launch translate.py \ --sentences_path sample_text/en.txt \ --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ --source_lang en \ --target_lang es \ --model_name facebook/m2m100_1.2B ``` #### Multi-GPU: See Accelerate documentation for more information (multi-node, TPU, Sharded model...): https://huggingface.co/docs/accelerate/index You can use the Accelerate CLI to configure the Accelerate environment (Run `accelerate config` in your terminal) instead of using the `--multi_gpu and --num_processes` flags. ```bash accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \ --sentences_path sample_text/en.txt \ --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ --source_lang en \ --target_lang es \ --model_name facebook/m2m100_1.2B ``` #### Automatic batch size finder: We will automatically find a batch size that fits in your GPU memory. The default initial batch size is 128 (You can set it with the `--starting_batch_size 128` flag). If we find an Out Of Memory error, we will automatically decrease the batch size until we find a working one. #### Choose precision: Use the `--precision` flag to choose the precision of the model. You can choose between: bf16, fp16 and 32. ```bash accelerate launch translate.py \ --sentences_path sample_text/en.txt \ --output_path sample_text/en2es.translation.m2m100_1.2B.txt \ --source_lang en \ --target_lang es \ --model_name facebook/m2m100_1.2B \ --precision fp16 ``` ## Evaluate translations To run the evaluation script you need to install [bert_score](https://github.com/Tiiiger/bert_score): `pip install bert_score` The evaluation script will calculate the following metrics: * [SacreBLEU](https://github.com/huggingface/datasets/tree/master/metrics/sacrebleu) * [BLEU](https://github.com/huggingface/datasets/tree/master/metrics/bleu) * [ROUGE](https://github.com/huggingface/datasets/tree/master/metrics/rouge) * [METEOR](https://github.com/huggingface/datasets/tree/master/metrics/meteor) * [TER](https://github.com/huggingface/datasets/tree/master/metrics/ter) * [BertScore](https://github.com/huggingface/datasets/tree/master/metrics/bertscore) Run the following command to evaluate the translations: ```bash accelerate launch eval.py \ --pred_path sample_text/es.txt \ --gold_path sample_text/en2es.translation.m2m100_1.2B.txt ``` If you want to save the results to a file use the `--output_path` flag.