Jeysshon commited on
Commit
9f94bb9
1 Parent(s): 2a1d5c1

Upload cosas.txt

Browse files
Files changed (1) hide show
  1. cosas.txt +128 -0
cosas.txt ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from fastai.vision.all import *
3
+ import gradio as gr
4
+
5
+ # Cargar los modelos
6
+ learn_emotion = load_learner('emotions_jey.pkl')
7
+ learn_emotion_labels = learn_emotion.dls.vocab
8
+
9
+ learn_sentiment = load_learner('sentiment_jey.pkl')
10
+ learn_sentiment_labels = learn_sentiment.dls.vocab
11
+
12
+ # Diccionario de mapeo de etiquetas en inglés a etiquetas en español
13
+ label_mapping = {
14
+ 'angry': 'enojado',
15
+ 'disgust': 'asco',
16
+ 'fear': 'miedo',
17
+ 'happy': 'feliz',
18
+ 'sad': 'triste',
19
+ 'surprise': 'sorpresa',
20
+ 'neutral': 'neutral',
21
+ 'negative': 'negativo',
22
+ 'positive': 'positivo'
23
+ }
24
+
25
+ # Función de predicción
26
+ def predict(img_path):
27
+ img = PILImage.create(img_path)
28
+
29
+ pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
30
+ pred_sentiment, pred_sentiment_idx, probs_sentiment = learn_sentiment.predict(img)
31
+
32
+ emotions = {label_mapping[label]: float(prob) for label, prob in zip(learn_emotion_labels, probs_emotion)}
33
+ sentiments = {label_mapping[label]: float(prob) for label, prob in zip(learn_sentiment_labels, probs_sentiment)}
34
+
35
+ return emotions, sentiments
36
+
37
+ # Interfaz de Gradio
38
+ title = "Detector de emociones y sentimientos faciales"
39
+ description = (
40
+ "Esta interfaz utiliza redes neuronales para detectar emociones y sentimientos a partir de imágenes faciales."
41
+ )
42
+ article = "Esta herramienta proporciona una forma rápida de analizar emociones y sentimientos en imágenes."
43
+
44
+ examples = [
45
+ 'PrivateTest_10131363.jpg',
46
+ 'angry1.png',
47
+ 'angry2.jpg',
48
+ 'happy1.jpg',
49
+ 'happy2.jpg',
50
+ 'neutral1.jpg',
51
+ 'neutral2.jpg'
52
+ ]
53
+
54
+ iface = gr.Interface(
55
+ fn=predict,
56
+ inputs=gr.Image(shape=(48, 48), image_mode='L'),
57
+ outputs=[gr.Label(label='Emoción'), gr.Label(label='Sentimiento')],
58
+ title=title,
59
+ examples=examples,
60
+ description=description,
61
+ article=article,
62
+ allow_flagging='never'
63
+ )
64
+
65
+ iface.launch(enable_queue=True)
66
+
67
+
68
+
69
+
70
+
71
+
72
+ #################
73
+
74
+ import os
75
+ from fastai.vision.all import *
76
+ import gradio as gr
77
+
78
+ # Cargar los modelos
79
+ learn_emotion = load_learner('emotions_jey.pkl')
80
+ learn_emotion_labels = learn_emotion.dls.vocab
81
+
82
+ learn_sentiment = load_learner('sentiment_jey.pkl')
83
+ learn_sentiment_labels = learn_sentiment.dls.vocab
84
+
85
+ # Función de predicción
86
+ def predict(img_path):
87
+ img = PILImage.create(img_path)
88
+
89
+ pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img)
90
+ pred_sentiment, pred_sentiment_idx, probs_sentiment = learn_sentiment.predict(img)
91
+
92
+ emotions = {label: float(prob) for label, prob in zip(learn_emotion_labels, probs_emotion)}
93
+ sentiments = {label: float(prob) for label, prob in zip(learn_sentiment_labels, probs_sentiment)}
94
+
95
+ return emotions, sentiments
96
+
97
+ # Interfaz de Gradio
98
+ title = "Detector de emociones y sentimientos faciales "
99
+ description = (
100
+ "Esta interfaz utiliza redes neuronales para detectar emociones y sentimientos a partir de imágenes faciales."
101
+ )
102
+ article = "Esta herramienta proporciona una forma rápida de analizar emociones y sentimientos en imágenes."
103
+
104
+ examples = [
105
+ 'PrivateTest_10131363.jpg',
106
+ 'angry1.png',
107
+ 'angry2.jpg',
108
+ 'happy1.jpg',
109
+ 'happy2.jpg',
110
+ 'neutral1.jpg',
111
+ 'neutral2.jpg'
112
+
113
+ ]
114
+
115
+ iface = gr.Interface(
116
+ fn=predict,
117
+ inputs=gr.Image(shape=(48, 48), image_mode='L'),
118
+ outputs=[gr.Label(label='Emotion'), gr.Label(label='Sentiment')],
119
+ title=title,
120
+ examples=examples,
121
+ description=description,
122
+ article=article,
123
+ allow_flagging='never'
124
+ )
125
+
126
+ iface.launch(enable_queue=True)
127
+
128
+