Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
import gradio as gr
|
4 |
+
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
|
5 |
+
from peft import PeftModel, PeftConfig
|
6 |
+
from textwrap import wrap, fill
|
7 |
+
|
8 |
+
MAX_LENGTH=1000
|
9 |
+
|
10 |
+
def wrap_text(text, width=90):
|
11 |
+
lines = text.split('\n')
|
12 |
+
wrapped_lines = [fill(line, width=width) for line in lines]
|
13 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
14 |
+
return wrapped_text
|
15 |
+
|
16 |
+
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
17 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
18 |
+
|
19 |
+
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
20 |
+
model_inputs = encodeds.to(device)
|
21 |
+
|
22 |
+
output = peft_model.generate(
|
23 |
+
**model_inputs,
|
24 |
+
max_length=MAX_LENGTH,
|
25 |
+
use_cache=True,
|
26 |
+
early_stopping=True,
|
27 |
+
bos_token_id=peft_model.config.bos_token_id,
|
28 |
+
eos_token_id=peft_model.config.eos_token_id,
|
29 |
+
pad_token_id=peft_model.config.eos_token_id,
|
30 |
+
temperature=0.1,
|
31 |
+
do_sample=True
|
32 |
+
)
|
33 |
+
|
34 |
+
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
35 |
+
|
36 |
+
return response_text
|
37 |
+
|
38 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
|
40 |
+
base_model_id = "mistralai/Mistral-7B-v0.1"
|
41 |
+
model_directory = "Tonic/mistralmed"
|
42 |
+
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
|
44 |
+
tokenizer.pad_token = tokenizer.eos_token
|
45 |
+
tokenizer.padding_side = 'left'
|
46 |
+
|
47 |
+
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed", token="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")
|
48 |
+
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
|
49 |
+
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed", token="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")
|
50 |
+
|
51 |
+
class ChatBot:
|
52 |
+
def __init__(self):
|
53 |
+
self.history = []
|
54 |
+
|
55 |
+
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
|
56 |
+
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
|
57 |
+
|
58 |
+
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
59 |
+
|
60 |
+
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
61 |
+
|
62 |
+
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
63 |
+
return response_text
|
64 |
+
|
65 |
+
bot = ChatBot()
|
66 |
+
|
67 |
+
title = "👋🏻토닉의 미스트랄메드 채팅에 오신 것을 환영합니다🚀👋🏻Welcome to Tonic's MistralMed Chat🚀"
|
68 |
+
description = "이 공간을 사용하여 현재 모델을 테스트할 수 있습니다. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) 또는 이 공간을 복제하고 로컬 또는 🤗HuggingFace에서 사용할 수 있습니다. [Discord에서 함께 만들기 위해 Discord에 가입하십시오](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
69 |
+
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and complete the answer"]]
|
70 |
+
|
71 |
+
iface = gr.Interface(
|
72 |
+
fn=bot.predict,
|
73 |
+
title=title,
|
74 |
+
description=description,
|
75 |
+
examples=examples,
|
76 |
+
inputs=["text", "text"],
|
77 |
+
outputs="text",
|
78 |
+
theme="ParityError/Anime"
|
79 |
+
)
|
80 |
+
|
81 |
+
iface.launch()
|