File size: 28,993 Bytes
1b677c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 |
# Copyright (C) 2018 Artsiom Sanakoyeu and Dmytro Kotovenko
#
# This file is part of Adaptive Style Transfer
#
# Adaptive Style Transfer is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Adaptive Style Transfer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
from __future__ import division
from __future__ import print_function
import os
import time
from glob import glob
import tensorflow as tf
import numpy as np
from collections import namedtuple
from tqdm import tqdm
import multiprocessing
from module import *
from utils import *
import prepare_dataset
import img_augm
class Artgan(object):
def __init__(self, sess, args):
self.model_name = args.model_name
self.root_dir = './models'
self.checkpoint_dir = os.path.join(self.root_dir, self.model_name, 'checkpoint')
self.checkpoint_long_dir = os.path.join(self.root_dir, self.model_name, 'checkpoint_long')
self.sample_dir = os.path.join(self.root_dir, self.model_name, 'sample')
self.inference_dir = os.path.join(self.root_dir, self.model_name, 'inference')
self.logs_dir = os.path.join(self.root_dir, self.model_name, 'logs')
self.sess = sess
self.batch_size = args.batch_size
self.image_size = args.image_size
self.loss = sce_criterion
self.initial_step = 0
OPTIONS = namedtuple('OPTIONS',
'batch_size image_size \
total_steps save_freq lr\
gf_dim df_dim \
is_training \
path_to_content_dataset \
path_to_art_dataset \
discr_loss_weight transformer_loss_weight feature_loss_weight')
self.options = OPTIONS._make((args.batch_size, args.image_size,
args.total_steps, args.save_freq, args.lr,
args.ngf, args.ndf,
args.phase == 'train',
args.path_to_content_dataset,
args.path_to_art_dataset,
args.discr_loss_weight, args.transformer_loss_weight, args.feature_loss_weight
))
# Create all the folders for saving the model
if not os.path.exists(self.root_dir):
os.makedirs(self.root_dir)
if not os.path.exists(os.path.join(self.root_dir, self.model_name)):
os.makedirs(os.path.join(self.root_dir, self.model_name))
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
if not os.path.exists(self.checkpoint_long_dir):
os.makedirs(self.checkpoint_long_dir)
if not os.path.exists(self.sample_dir):
os.makedirs(self.sample_dir)
if not os.path.exists(self.inference_dir):
os.makedirs(self.inference_dir)
self._build_model()
#@STCGoal Keep an entire sequence of each 1000 iterations steps
#@q Do that bellow set to 405 would keep the whole sequence ??
self.saver = tf.train.Saver(max_to_keep=2)
self.saver_long = tf.train.Saver(max_to_keep=None)
def _build_model(self):
if self.options.is_training:
# ==================== Define placeholders. ===================== #
with tf.name_scope('placeholder'):
self.input_painting = tf.placeholder(dtype=tf.float32,
shape=[self.batch_size, None, None, 3],
name='painting')
self.input_photo = tf.placeholder(dtype=tf.float32,
shape=[self.batch_size, None, None, 3],
name='photo')
self.lr = tf.placeholder(dtype=tf.float32, shape=(), name='learning_rate')
# ===================== Wire the graph. ========================= #
# Encode input images.
self.input_photo_features = encoder(image=self.input_photo,
options=self.options,
reuse=False)
# Decode obtained features
self.output_photo = decoder(features=self.input_photo_features,
options=self.options,
reuse=False)
# Get features of output images. Need them to compute feature loss.
self.output_photo_features = encoder(image=self.output_photo,
options=self.options,
reuse=True)
# Add discriminators.
# Note that each of the predictions contain multiple predictions
# at different scale.
self.input_painting_discr_predictions = discriminator(image=self.input_painting,
options=self.options,
reuse=False)
self.input_photo_discr_predictions = discriminator(image=self.input_photo,
options=self.options,
reuse=True)
self.output_photo_discr_predictions = discriminator(image=self.output_photo,
options=self.options,
reuse=True)
# ===================== Final losses that we optimize. ===================== #
# Discriminator.
# Have to predict ones only for original paintings, otherwise predict zero.
scale_weight = {"scale_0": 1.,
"scale_1": 1.,
"scale_3": 1.,
"scale_5": 1.,
"scale_6": 1.}
self.input_painting_discr_loss = {key: self.loss(pred, tf.ones_like(pred)) * scale_weight[key]
for key, pred in zip(self.input_painting_discr_predictions.keys(),
self.input_painting_discr_predictions.values())}
self.input_photo_discr_loss = {key: self.loss(pred, tf.zeros_like(pred)) * scale_weight[key]
for key, pred in zip(self.input_photo_discr_predictions.keys(),
self.input_photo_discr_predictions.values())}
self.output_photo_discr_loss = {key: self.loss(pred, tf.zeros_like(pred)) * scale_weight[key]
for key, pred in zip(self.output_photo_discr_predictions.keys(),
self.output_photo_discr_predictions.values())}
self.discr_loss = tf.add_n(list(self.input_painting_discr_loss.values())) + \
tf.add_n(list(self.input_photo_discr_loss.values())) + \
tf.add_n(list(self.output_photo_discr_loss.values()))
# Compute discriminator accuracies.
self.input_painting_discr_acc = {key: tf.reduce_mean(tf.cast(x=(pred > tf.zeros_like(pred)),
dtype=tf.float32)) * scale_weight[key]
for key, pred in zip(self.input_painting_discr_predictions.keys(),
self.input_painting_discr_predictions.values())}
self.input_photo_discr_acc = {key: tf.reduce_mean(tf.cast(x=(pred < tf.zeros_like(pred)),
dtype=tf.float32)) * scale_weight[key]
for key, pred in zip(self.input_photo_discr_predictions.keys(),
self.input_photo_discr_predictions.values())}
self.output_photo_discr_acc = {key: tf.reduce_mean(tf.cast(x=(pred < tf.zeros_like(pred)),
dtype=tf.float32)) * scale_weight[key]
for key, pred in zip(self.output_photo_discr_predictions.keys(),
self.output_photo_discr_predictions.values())}
self.discr_acc = (tf.add_n(list(self.input_painting_discr_acc.values())) + \
tf.add_n(list(self.input_photo_discr_acc.values())) + \
tf.add_n(list(self.output_photo_discr_acc.values()))) / float(len(scale_weight.keys())*3)
# Generator.
# Predicts ones for both output images.
self.output_photo_gener_loss = {key: self.loss(pred, tf.ones_like(pred)) * scale_weight[key]
for key, pred in zip(self.output_photo_discr_predictions.keys(),
self.output_photo_discr_predictions.values())}
self.gener_loss = tf.add_n(list(self.output_photo_gener_loss.values()))
# Compute generator accuracies.
self.output_photo_gener_acc = {key: tf.reduce_mean(tf.cast(x=(pred > tf.zeros_like(pred)),
dtype=tf.float32)) * scale_weight[key]
for key, pred in zip(self.output_photo_discr_predictions.keys(),
self.output_photo_discr_predictions.values())}
self.gener_acc = tf.add_n(list(self.output_photo_gener_acc.values())) / float(len(scale_weight.keys()))
# Image loss.
self.img_loss_photo = mse_criterion(transformer_block(self.output_photo),
transformer_block(self.input_photo))
self.img_loss = self.img_loss_photo
# Features loss.
self.feature_loss_photo = abs_criterion(self.output_photo_features, self.input_photo_features)
self.feature_loss = self.feature_loss_photo
# ================== Define optimization steps. =============== #
t_vars = tf.trainable_variables()
self.discr_vars = [var for var in t_vars if 'discriminator' in var.name]
self.encoder_vars = [var for var in t_vars if 'encoder' in var.name]
self.decoder_vars = [var for var in t_vars if 'decoder' in var.name]
# Discriminator and generator steps.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
self.d_optim_step = tf.train.AdamOptimizer(self.lr).minimize(
loss=self.options.discr_loss_weight * self.discr_loss,
var_list=[self.discr_vars])
self.g_optim_step = tf.train.AdamOptimizer(self.lr).minimize(
loss=self.options.discr_loss_weight * self.gener_loss +
self.options.transformer_loss_weight * self.img_loss +
self.options.feature_loss_weight * self.feature_loss,
var_list=[self.encoder_vars + self.decoder_vars])
# ============= Write statistics to tensorboard. ================ #
# Discriminator loss summary.
s_d1 = [tf.summary.scalar("discriminator/input_painting_discr_loss/"+key, val)
for key, val in zip(self.input_painting_discr_loss.keys(), self.input_painting_discr_loss.values())]
s_d2 = [tf.summary.scalar("discriminator/input_photo_discr_loss/"+key, val)
for key, val in zip(self.input_photo_discr_loss.keys(), self.input_photo_discr_loss.values())]
s_d3 = [tf.summary.scalar("discriminator/output_photo_discr_loss/" + key, val)
for key, val in zip(self.output_photo_discr_loss.keys(), self.output_photo_discr_loss.values())]
s_d = tf.summary.scalar("discriminator/discr_loss", self.discr_loss)
self.summary_discriminator_loss = tf.summary.merge(s_d1+s_d2+s_d3+[s_d])
# Discriminator acc summary.
s_d1_acc = [tf.summary.scalar("discriminator/input_painting_discr_acc/"+key, val)
for key, val in zip(self.input_painting_discr_acc.keys(), self.input_painting_discr_acc.values())]
s_d2_acc = [tf.summary.scalar("discriminator/input_photo_discr_acc/"+key, val)
for key, val in zip(self.input_photo_discr_acc.keys(), self.input_photo_discr_acc.values())]
s_d3_acc = [tf.summary.scalar("discriminator/output_photo_discr_acc/" + key, val)
for key, val in zip(self.output_photo_discr_acc.keys(), self.output_photo_discr_acc.values())]
s_d_acc = tf.summary.scalar("discriminator/discr_acc", self.discr_acc)
s_d_acc_g = tf.summary.scalar("discriminator/discr_acc", self.gener_acc)
self.summary_discriminator_acc = tf.summary.merge(s_d1_acc+s_d2_acc+s_d3_acc+[s_d_acc])
# Image loss summary.
s_i1 = tf.summary.scalar("image_loss/photo", self.img_loss_photo)
s_i = tf.summary.scalar("image_loss/loss", self.img_loss)
self.summary_image_loss = tf.summary.merge([s_i1 + s_i])
# Feature loss summary.
s_f1 = tf.summary.scalar("feature_loss/photo", self.feature_loss_photo)
s_f = tf.summary.scalar("feature_loss/loss", self.feature_loss)
self.summary_feature_loss = tf.summary.merge([s_f1 + s_f])
self.summary_merged_all = tf.summary.merge_all()
self.writer = tf.summary.FileWriter(self.logs_dir, self.sess.graph)
else:
# ==================== Define placeholders. ===================== #
with tf.name_scope('placeholder'):
self.input_photo = tf.placeholder(dtype=tf.float32,
shape=[self.batch_size, None, None, 3],
name='photo')
# ===================== Wire the graph. ========================= #
# Encode input images.
self.input_photo_features = encoder(image=self.input_photo,
options=self.options,
reuse=False)
# Decode obtained features.
self.output_photo = decoder(features=self.input_photo_features,
options=self.options,
reuse=False)
def train(self, args, ckpt_nmbr=None):
# Initialize augmentor.
augmentor = img_augm.Augmentor(crop_size=[self.options.image_size, self.options.image_size],
vertical_flip_prb=0.,
hsv_augm_prb=1.0,
hue_augm_shift=0.05,
saturation_augm_shift=0.05, saturation_augm_scale=0.05,
value_augm_shift=0.05, value_augm_scale=0.05, )
content_dataset_places = prepare_dataset.PlacesDataset(path_to_dataset=self.options.path_to_content_dataset)
art_dataset = prepare_dataset.ArtDataset(path_to_art_dataset=self.options.path_to_art_dataset)
# Initialize queue workers for both datasets.
q_art = multiprocessing.Queue(maxsize=10)
q_content = multiprocessing.Queue(maxsize=10)
jobs = []
for i in range(5):
p = multiprocessing.Process(target=content_dataset_places.initialize_batch_worker,
args=(q_content, augmentor, self.batch_size, i))
p.start()
jobs.append(p)
p = multiprocessing.Process(target=art_dataset.initialize_batch_worker,
args=(q_art, augmentor, self.batch_size, i))
p.start()
jobs.append(p)
print("Processes are started.")
time.sleep(3)
# Now initialize the graph
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
print("Start training.")
if self.load(self.checkpoint_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
if self.load(self.checkpoint_long_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
# Initial discriminator success rate.
win_rate = args.discr_success_rate
discr_success = args.discr_success_rate
alpha = 0.05
for step in tqdm(range(self.initial_step, self.options.total_steps+1),
initial=self.initial_step,
total=self.options.total_steps):
# Get batch from the queue with batches q, if the last is non-empty.
while q_art.empty() or q_content.empty():
pass
batch_art = q_art.get()
batch_content = q_content.get()
if discr_success >= win_rate:
# Train generator
_, summary_all, gener_acc_ = self.sess.run(
[self.g_optim_step, self.summary_merged_all, self.gener_acc],
feed_dict={
self.input_painting: normalize_arr_of_imgs(batch_art['image']),
self.input_photo: normalize_arr_of_imgs(batch_content['image']),
self.lr: self.options.lr
})
discr_success = discr_success * (1. - alpha) + alpha * (1. - gener_acc_)
else:
# Train discriminator.
_, summary_all, discr_acc_ = self.sess.run(
[self.d_optim_step, self.summary_merged_all, self.discr_acc],
feed_dict={
self.input_painting: normalize_arr_of_imgs(batch_art['image']),
self.input_photo: normalize_arr_of_imgs(batch_content['image']),
self.lr: self.options.lr
})
discr_success = discr_success * (1. - alpha) + alpha * discr_acc_
self.writer.add_summary(summary_all, step * self.batch_size)
if step % self.options.save_freq == 0 and step > self.initial_step:
self.save(step)
# And additionally save all checkpoints each 15000 steps.
if step % 15000 == 0 and step > self.initial_step:
self.save(step, is_long=True)
if step % 500 == 0:
output_paintings_, output_photos_= self.sess.run(
[self.input_painting, self.output_photo],
feed_dict={
self.input_painting: normalize_arr_of_imgs(batch_art['image']),
self.input_photo: normalize_arr_of_imgs(batch_content['image']),
self.lr: self.options.lr
})
save_batch(input_painting_batch=batch_art['image'],
input_photo_batch=batch_content['image'],
output_painting_batch=denormalize_arr_of_imgs(output_paintings_),
output_photo_batch=denormalize_arr_of_imgs(output_photos_),
filepath='%s/step_%d.jpg' % (self.sample_dir, step))
print("Training is finished. Terminate jobs.")
for p in jobs:
p.join()
p.terminate()
print("Done.")
print("Does the sys.exit() made this process to exit ??")
sys.exit()
# Don't use this function yet.
def inference_video(self, args, path_to_folder, to_save_dir=None, resize_to_original=True,
use_time_smooth_randomness=True, ckpt_nmbr=None,file_suffix= "_stylized"):
"""
Run inference on the video frames. Original aspect ratio will be preserved.
Args:
args:
path_to_folder: path to the folder with frames from the video
to_save_dir:
resize_to_original:
use_time_smooth_randomness: change the random vector
which is added to the bottleneck features linearly over tim
Returns:
"""
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
print("Start inference.")
if self.load(self.checkpoint_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
if self.load(self.checkpoint_long_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
# Create folder to store results.
if to_save_dir is None:
to_save_dir = os.path.join(self.root_dir, self.model_name,
'inference_ckpt%d_sz%d' % (self.initial_step, self.image_size))
if not os.path.exists(to_save_dir):
os.makedirs(to_save_dir)
image_paths = sorted(os.listdir(path_to_folder))
num_images = len(image_paths)
for img_idx, img_name in enumerate(tqdm(image_paths)):
img_path = os.path.join(path_to_folder, img_name)
img = scipy.misc.imread(img_path, mode='RGB')
img_shape = img.shape[:2]
# Prepare image for feeding into network.
scale_mult = self.image_size / np.min(img_shape)
new_shape = (np.array(img_shape, dtype=float) * scale_mult).astype(int)
img = scipy.misc.imresize(img, size=new_shape)
img = np.expand_dims(img, axis=0)
if use_time_smooth_randomness and img_idx == 0:
features_delta = self.sess.run(self.labels_to_concatenate_to_features,
feed_dict={
self.input_photo: normalize_arr_of_imgs(img),
})
features_delta_start = features_delta + np.random.random(size=features_delta.shape) * 0.5 - 0.25
features_delta_start = features_delta_start.clip(0, 1000)
print('features_delta_start.shape=', features_delta_start.shape)
features_delta_end = features_delta + np.random.random(size=features_delta.shape) * 0.5 - 0.25
features_delta_end = features_delta_end.clip(0, 1000)
step = (features_delta_end - features_delta_start) / (num_images - 1)
feed_dict = {
self.input_painting: normalize_arr_of_imgs(img),
self.input_photo: normalize_arr_of_imgs(img),
self.lr: self.options.lr
}
if use_time_smooth_randomness:
pass
img = self.sess.run(self.output_photo, feed_dict=feed_dict)
img = img[0]
img = denormalize_arr_of_imgs(img)
if resize_to_original:
img = scipy.misc.imresize(img, size=img_shape)
else:
pass
scipy.misc.imsave(os.path.join(to_save_dir, img_name[:-4] + file_suffix +".jpg"), img)
print("Inference is finished.")
def inference(self, args, path_to_folder, to_save_dir=None, resize_to_original=True,
ckpt_nmbr=None,file_suffix= "_stylized"):
init_op = tf.global_variables_initializer()
self.sess.run(init_op)
print("Start inference.")
if self.load(self.checkpoint_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
if self.load(self.checkpoint_long_dir, ckpt_nmbr):
print(" [*] Load SUCCESS")
else:
print(" [!] Load failed...")
#Exit if we can not load (fix issue inferencing noizy image)
sys.exit()
# Create folder to store results.
if to_save_dir is None:
to_save_dir = os.path.join(self.root_dir, self.model_name,
'inference_ckpt%d_sz%d' % (self.initial_step, self.image_size))
if not os.path.exists(to_save_dir):
os.makedirs(to_save_dir)
names = []
for d in path_to_folder:
names += glob(os.path.join(d, '*'))
names = [x for x in names if os.path.basename(x)[0] != '.']
names.sort()
for img_idx, img_path in enumerate(tqdm(names)):
img = scipy.misc.imread(img_path, mode='RGB')
img_shape = img.shape[:2]
# Resize the smallest side of the image to the self.image_size
alpha = float(self.image_size) / float(min(img_shape))
img = scipy.misc.imresize(img, size=alpha)
img = np.expand_dims(img, axis=0)
img = self.sess.run(
self.output_photo,
feed_dict={
self.input_photo: normalize_arr_of_imgs(img),
})
img = img[0]
img = denormalize_arr_of_imgs(img)
if resize_to_original:
img = scipy.misc.imresize(img, size=img_shape)
else:
pass
img_name = os.path.basename(img_path)
#@STCGoal HERE TO APPEND SUFFIX TO FILE
scipy.misc.imsave(os.path.join(to_save_dir, img_name[:-4] + file_suffix +".jpg"), img)
print("Inference is finished.")
def save(self, step, is_long=False):
if not os.path.exists(self.checkpoint_dir):
os.makedirs(self.checkpoint_dir)
if is_long:
self.saver_long.save(self.sess,
os.path.join(self.checkpoint_long_dir, self.model_name+'_%d.ckpt' % step),
global_step=step)
else:
self.saver.save(self.sess,
os.path.join(self.checkpoint_dir, self.model_name + '_%d.ckpt' % step),
global_step=step)
def load(self, checkpoint_dir, ckpt_nmbr=None):
if ckpt_nmbr:
if len([x for x in os.listdir(checkpoint_dir) if ("ckpt-" + str(ckpt_nmbr)) in x]) > 0:
print(" [*] Reading checkpoint %d from folder %s." % (ckpt_nmbr, checkpoint_dir))
ckpt_name = [x for x in os.listdir(checkpoint_dir) if ("ckpt-" + str(ckpt_nmbr)) in x][0]
ckpt_name = '.'.join(ckpt_name.split('.')[:-1])
self.initial_step = ckpt_nmbr
print("Load checkpoint %s. Initial step: %s." % (ckpt_name, self.initial_step))
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
else:
return False
else:
print(" [*] Reading latest checkpoint from folder %s." % (checkpoint_dir))
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
ckpt_name = os.path.basename(ckpt.model_checkpoint_path)
self.initial_step = int(ckpt_name.split("_")[-1].split(".")[0])
print("Load checkpoint %s. Initial step: %s." % (ckpt_name, self.initial_step))
self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name))
return True
else:
return False
|