File size: 1,946 Bytes
4f150bd
 
436c4c1
 
 
 
 
 
 
 
 
 
 
 
4f150bd
ee305a4
436c4c1
 
4f150bd
436c4c1
4f150bd
 
 
 
436c4c1
4f150bd
 
 
 
436c4c1
4f150bd
 
436c4c1
4f150bd
 
436c4c1
 
 
ee305a4
 
436c4c1
ee305a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import random
from vocabulary_split import split_vocabulary, filter_logits
# from transformers import AutoTokenizer, AutoModelForMaskedLM
from masking_methods import tokenizer

# Load tokenizer and model for masked language model
# tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
# model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")


# Get permissible vocabulary
permissible, _ = split_vocabulary(seed=42)
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))])

def sample_word(sentence, words, logits, sampling_technique='inverse_transform', temperature=1.0):
    filtered_logits = filter_logits(torch.tensor(logits), permissible_indices)
    
    if sampling_technique == 'inverse_transform':
        probs = torch.softmax(filtered_logits / temperature, dim=-1)
        cumulative_probs = torch.cumsum(probs, dim=-1)
        random_prob = random.random()
        sampled_index = torch.where(cumulative_probs >= random_prob)[0][0]
    elif sampling_technique == 'exponential_minimum':
        probs = torch.softmax(filtered_logits / temperature, dim=-1)
        exp_probs = torch.exp(-torch.log(probs))
        random_probs = torch.rand_like(exp_probs)
        sampled_index = torch.argmax(random_probs * exp_probs)
    elif sampling_technique == 'temperature':
        probs = torch.softmax(filtered_logits / temperature, dim=-1)
        sampled_index = torch.multinomial(probs, 1).item()
    elif sampling_technique == 'greedy':
        sampled_index = torch.argmax(filtered_logits).item()
    else:
        raise ValueError("Invalid sampling technique. Choose 'inverse_transform', 'exponential_minimum', 'temperature', or 'greedy'.")

    sampled_word = tokenizer.decode([sampled_index])

    # Replace [MASK] with the sampled word
    filled_sentence = sentence.replace('[MASK]', sampled_word)

    return filled_sentence