aiisc-watermarking-model / masking_methods.py
jgyasu's picture
Upload folder using huggingface_hub
ee305a4 verified
raw
history blame
5.64 kB
# from transformers import AutoTokenizer, AutoModelForMaskedLM
# from transformers import pipeline
# import random
# from nltk.corpus import stopwords
# import math
# # Masking Model
# def mask_non_stopword(sentence):
# stop_words = set(stopwords.words('english'))
# words = sentence.split()
# non_stop_words = [word for word in words if word.lower() not in stop_words]
# if not non_stop_words:
# return sentence
# word_to_mask = random.choice(non_stop_words)
# masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
# return masked_sentence
# def mask_non_stopword_pseudorandom(sentence):
# stop_words = set(stopwords.words('english'))
# words = sentence.split()
# non_stop_words = [word for word in words if word.lower() not in stop_words]
# if not non_stop_words:
# return sentence
# random.seed(10)
# word_to_mask = random.choice(non_stop_words)
# masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
# return masked_sentence
# def high_entropy_words(sentence, non_melting_points):
# stop_words = set(stopwords.words('english'))
# words = sentence.split()
# non_melting_words = set()
# for _, point in non_melting_points:
# non_melting_words.update(point.lower().split())
# candidate_words = [word for word in words if word.lower() not in stop_words and word.lower() not in non_melting_words]
# if not candidate_words:
# return sentence
# max_entropy = -float('inf')
# max_entropy_word = None
# for word in candidate_words:
# masked_sentence = sentence.replace(word, '[MASK]', 1)
# predictions = fill_mask(masked_sentence)
# # Calculate entropy based on top 5 predictions
# entropy = -sum(pred['score'] * math.log(pred['score']) for pred in predictions[:5])
# if entropy > max_entropy:
# max_entropy = entropy
# max_entropy_word = word
# return sentence.replace(max_entropy_word, '[MASK]', 1)
# # Load tokenizer and model for masked language model
# tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
# model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
# fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
from transformers import AutoTokenizer, AutoModelForMaskedLM
from transformers import pipeline
import random
from nltk.corpus import stopwords
import math
# Masking Model
def mask_non_stopword(sentence):
stop_words = set(stopwords.words('english'))
words = sentence.split()
non_stop_words = [word for word in words if word.lower() not in stop_words]
if not non_stop_words:
return sentence, None, None
word_to_mask = random.choice(non_stop_words)
masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
predictions = fill_mask(masked_sentence)
words = [pred['score'] for pred in predictions]
logits = [pred['token_str'] for pred in predictions]
return masked_sentence, words, logits
def mask_non_stopword_pseudorandom(sentence):
stop_words = set(stopwords.words('english'))
words = sentence.split()
non_stop_words = [word for word in words if word.lower() not in stop_words]
if not non_stop_words:
return sentence, None, None
random.seed(10)
word_to_mask = random.choice(non_stop_words)
masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
predictions = fill_mask(masked_sentence)
words = [pred['score'] for pred in predictions]
logits = [pred['token_str'] for pred in predictions]
return masked_sentence, words, logits
def high_entropy_words(sentence, non_melting_points):
stop_words = set(stopwords.words('english'))
words = sentence.split()
non_melting_words = set()
for _, point in non_melting_points:
non_melting_words.update(point.lower().split())
candidate_words = [word for word in words if word.lower() not in stop_words and word.lower() not in non_melting_words]
if not candidate_words:
return sentence, None, None
max_entropy = -float('inf')
max_entropy_word = None
max_logits = None
for word in candidate_words:
masked_sentence = sentence.replace(word, '[MASK]', 1)
predictions = fill_mask(masked_sentence)
# Calculate entropy based on top 5 predictions
entropy = -sum(pred['score'] * math.log(pred['score']) for pred in predictions[:5])
if entropy > max_entropy:
max_entropy = entropy
max_entropy_word = word
max_logits = [pred['score'] for pred in predictions]
masked_sentence = sentence.replace(max_entropy_word, '[MASK]', 1)
words = [pred['score'] for pred in predictions]
logits = [pred['token_str'] for pred in predictions]
return masked_sentence, words, logits
# Load tokenizer and model for masked language model
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
non_melting_points = [(1, 'Jewish'), (2, 'messages'), (3, 'stab')]
a, b, c = high_entropy_words("A former Cornell University student was sentenced to 21 months in prison on Monday after admitting that he had posted a series of online messages last fall in which he threatened to stab, rape and behead Jewish people", non_melting_points)
print(f"logits type: {type(b)}")
print(f"logits content: {b}")