aiisc-watermarking-model / masking_methods_trial.py
jgyasu's picture
Upload folder using huggingface_hub
4506e19 verified
import torch
from transformers import AutoTokenizer, AutoModelForMaskedLM
from transformers import pipeline
import random
from nltk.corpus import stopwords
import nltk
nltk.download('stopwords')
import math
from vocabulary_split import split_vocabulary, filter_logits
import abc
from typing import List
# Load tokenizer and model for masked language model
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
# Get permissible vocabulary
permissible, _ = split_vocabulary(seed=42)
permissible_indices = torch.tensor([i in permissible.values() for i in range(len(tokenizer))])
def get_logits_for_mask(model, tokenizer, sentence):
inputs = tokenizer(sentence, return_tensors="pt")
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
mask_token_logits = logits[0, mask_token_index, :]
return mask_token_logits.squeeze()
# Abstract Masking Strategy
class MaskingStrategy(abc.ABC):
@abc.abstractmethod
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]:
"""
Given a list of words, return the indices of words to mask.
"""
pass
# Specific Masking Strategies
class RandomNonStopwordMasking(MaskingStrategy):
def __init__(self, num_masks: int = 1):
self.num_masks = num_masks
self.stop_words = set(stopwords.words('english'))
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]:
non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words]
if not non_stop_indices:
return []
num_masks = min(self.num_masks, len(non_stop_indices))
return random.sample(non_stop_indices, num_masks)
class HighEntropyMasking(MaskingStrategy):
def __init__(self, num_masks: int = 1):
self.num_masks = num_masks
def select_words_to_mask(self, words: List[str], sentence: str, model, tokenizer, permissible_indices) -> List[int]:
candidate_indices = [i for i, word in enumerate(words) if word.lower() not in set(stopwords.words('english'))]
if not candidate_indices:
return []
entropy_scores = {}
for idx in candidate_indices:
masked_sentence = ' '.join(words[:idx] + ['[MASK]'] + words[idx+1:])
logits = get_logits_for_mask(model, tokenizer, masked_sentence)
filtered_logits = filter_logits(logits, permissible_indices)
probs = torch.softmax(filtered_logits, dim=-1)
top_5_probs = probs.topk(5).values
entropy = -torch.sum(top_5_probs * torch.log(top_5_probs + 1e-10)).item()
entropy_scores[idx] = entropy
# Select top N indices with highest entropy
sorted_indices = sorted(entropy_scores, key=entropy_scores.get, reverse=True)
return sorted_indices[:self.num_masks]
class PseudoRandomNonStopwordMasking(MaskingStrategy):
def __init__(self, num_masks: int = 1, seed: int = 10):
self.num_masks = num_masks
self.seed = seed
self.stop_words = set(stopwords.words('english'))
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]:
non_stop_indices = [i for i, word in enumerate(words) if word.lower() not in self.stop_words]
if not non_stop_indices:
return []
random.seed(self.seed)
num_masks = min(self.num_masks, len(non_stop_indices))
return random.sample(non_stop_indices, num_masks)
class CompositeMaskingStrategy(MaskingStrategy):
def __init__(self, strategies: List[MaskingStrategy]):
self.strategies = strategies
def select_words_to_mask(self, words: List[str], **kwargs) -> List[int]:
selected_indices = []
for strategy in self.strategies:
if isinstance(strategy, HighEntropyMasking):
selected = strategy.select_words_to_mask(words, **kwargs)
else:
selected = strategy.select_words_to_mask(words)
selected_indices.extend(selected)
return list(set(selected_indices)) # Remove duplicates
# Refactored mask_between_lcs function
def mask_between_lcs(sentence, lcs_points, masking_strategy: MaskingStrategy, model, tokenizer, permissible_indices):
words = sentence.split()
masked_indices = []
segments = []
# Define segments based on LCS points
previous = 0
for point in lcs_points:
if point > previous:
segments.append((previous, point))
previous = point + 1
if previous < len(words):
segments.append((previous, len(words)))
# Collect all indices to mask from each segment
for start, end in segments:
segment_words = words[start:end]
if isinstance(masking_strategy, HighEntropyMasking):
selected = masking_strategy.select_words_to_mask(segment_words, sentence, model, tokenizer, permissible_indices)
else:
selected = masking_strategy.select_words_to_mask(segment_words)
# Adjust indices relative to the whole sentence
for idx in selected:
masked_idx = start + idx
if masked_idx not in masked_indices:
masked_indices.append(masked_idx)
# Apply masking
for idx in masked_indices:
words[idx] = '[MASK]'
masked_sentence = ' '.join(words)
logits = get_logits_for_mask(model, tokenizer, masked_sentence)
# Process each masked token
top_words_list = []
logits_list = []
for i, idx in enumerate(masked_indices):
logits_i = logits[i]
if logits_i.dim() > 1:
logits_i = logits_i.squeeze()
filtered_logits_i = filter_logits(logits_i, permissible_indices)
logits_list.append(filtered_logits_i.tolist())
top_5_indices = filtered_logits_i.topk(5).indices.tolist()
top_words = [tokenizer.decode([i]) for i in top_5_indices]
top_words_list.append(top_words)
return masked_sentence, logits_list, top_words_list
# Example Usage
if __name__ == "__main__":
# Example sentence and LCS points
sentence = "This is a sample sentence with some LCS points"
lcs_points = [2, 5, 8] # Indices of LCS points
# Initialize masking strategies
random_non_stopword_strategy = RandomNonStopwordMasking(num_masks=1)
high_entropy_strategy = HighEntropyMasking(num_masks=1)
pseudo_random_strategy = PseudoRandomNonStopwordMasking(num_masks=1, seed=10)
composite_strategy = CompositeMaskingStrategy([
RandomNonStopwordMasking(num_masks=1),
HighEntropyMasking(num_masks=1)
])
# Choose a strategy
chosen_strategy = composite_strategy # You can choose any initialized strategy
# Apply masking
masked_sentence, logits_list, top_words_list = mask_between_lcs(
sentence,
lcs_points,
masking_strategy=chosen_strategy,
model=model,
tokenizer=tokenizer,
permissible_indices=permissible_indices
)
print("Masked Sentence:", masked_sentence)
for idx, top_words in enumerate(top_words_list):
print(f"Top words for mask {idx+1}:", top_words)