Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -90,6 +90,7 @@ def model(prompt):
|
|
90 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
91 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
92 |
|
|
|
93 |
# Initialize empty list to hold the trees
|
94 |
trees = []
|
95 |
|
|
|
90 |
highlighted_accepted_sentences = highlight_common_words_dict(common_grams, selected_sentences, "Paraphrased Sentences")
|
91 |
highlighted_discarded_sentences = highlight_common_words_dict(common_grams, discarded_sentences, "Discarded Sentences")
|
92 |
|
93 |
+
|
94 |
# Initialize empty list to hold the trees
|
95 |
trees = []
|
96 |
|
tree.py
CHANGED
@@ -1,3 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import plotly.graph_objects as go
|
2 |
import textwrap
|
3 |
import re
|
@@ -105,6 +263,25 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
105 |
colored_parts.append(part)
|
106 |
return ''.join(colored_parts)
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
# Create figure
|
109 |
fig = go.Figure()
|
110 |
|
@@ -134,8 +311,8 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
134 |
width=150
|
135 |
)
|
136 |
|
137 |
-
# Add edges
|
138 |
-
for edge in edges:
|
139 |
x0, y0 = positions[edge[0]]
|
140 |
x1, y1 = positions[edge[1]]
|
141 |
fig.add_trace(go.Scatter(
|
@@ -145,6 +322,23 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
145 |
line=dict(color='black', width=1)
|
146 |
))
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
fig.update_layout(
|
149 |
showlegend=False,
|
150 |
margin=dict(t=20, b=20, l=20, r=20),
|
@@ -154,4 +348,5 @@ def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, h
|
|
154 |
height=1000 # Adjusted height to accommodate more levels
|
155 |
)
|
156 |
|
157 |
-
return fig
|
|
|
|
1 |
+
# import plotly.graph_objects as go
|
2 |
+
# import textwrap
|
3 |
+
# import re
|
4 |
+
# from collections import defaultdict
|
5 |
+
|
6 |
+
# def generate_subplot(paraphrased_sentence, scheme_sentences, sampled_sentence, highlight_info):
|
7 |
+
# # Combine nodes into one list with appropriate labels
|
8 |
+
# nodes = [paraphrased_sentence] + scheme_sentences + sampled_sentence
|
9 |
+
# nodes[0] += ' L0' # Paraphrased sentence is level 0
|
10 |
+
# para_len = len(scheme_sentences)
|
11 |
+
# for i in range(1, para_len + 1):
|
12 |
+
# nodes[i] += ' L1' # Scheme sentences are level 1
|
13 |
+
# for i in range(para_len + 1, len(nodes)):
|
14 |
+
# nodes[i] += ' L2' # Sampled sentences are level 2
|
15 |
+
|
16 |
+
# # Define the highlight_words function
|
17 |
+
# def highlight_words(sentence, color_map):
|
18 |
+
# for word, color in color_map.items():
|
19 |
+
# sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE)
|
20 |
+
# return sentence
|
21 |
+
|
22 |
+
# # Clean and wrap nodes, and highlight specified words globally
|
23 |
+
# cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
|
24 |
+
# global_color_map = dict(highlight_info)
|
25 |
+
# highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes]
|
26 |
+
# wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in highlighted_nodes]
|
27 |
+
|
28 |
+
# # Function to determine tree levels and create edges dynamically
|
29 |
+
# def get_levels_and_edges(nodes):
|
30 |
+
# levels = {}
|
31 |
+
# edges = []
|
32 |
+
# for i, node in enumerate(nodes):
|
33 |
+
# level = int(node.split()[-1][1])
|
34 |
+
# levels[i] = level
|
35 |
+
|
36 |
+
# # Add edges from L0 to all L1 nodes
|
37 |
+
# root_node = next(i for i, level in levels.items() if level == 0)
|
38 |
+
# for i, level in levels.items():
|
39 |
+
# if level == 1:
|
40 |
+
# edges.append((root_node, i))
|
41 |
+
|
42 |
+
# # Add edges from each L1 node to their corresponding L2 nodes
|
43 |
+
# l1_indices = [i for i, level in levels.items() if level == 1]
|
44 |
+
# l2_indices = [i for i, level in levels.items() if level == 2]
|
45 |
+
|
46 |
+
# for i, l1_node in enumerate(l1_indices):
|
47 |
+
# l2_start = i * 4
|
48 |
+
# for j in range(4):
|
49 |
+
# l2_index = l2_start + j
|
50 |
+
# if l2_index < len(l2_indices):
|
51 |
+
# edges.append((l1_node, l2_indices[l2_index]))
|
52 |
+
|
53 |
+
# # Add edges from each L2 node to their corresponding L3 nodes
|
54 |
+
# l2_indices = [i for i, level in levels.items() if level == 2]
|
55 |
+
# l3_indices = [i for i, level in levels.items() if level == 3]
|
56 |
+
|
57 |
+
# l2_to_l3_map = {l2_node: [] for l2_node in l2_indices}
|
58 |
+
|
59 |
+
# # Map L3 nodes to L2 nodes
|
60 |
+
# for l3_node in l3_indices:
|
61 |
+
# l2_node = l3_node % len(l2_indices)
|
62 |
+
# l2_to_l3_map[l2_indices[l2_node]].append(l3_node)
|
63 |
+
|
64 |
+
# for l2_node, l3_nodes in l2_to_l3_map.items():
|
65 |
+
# for l3_node in l3_nodes:
|
66 |
+
# edges.append((l2_node, l3_node))
|
67 |
+
|
68 |
+
# return levels, edges
|
69 |
+
|
70 |
+
# # Get levels and dynamic edges
|
71 |
+
# levels, edges = get_levels_and_edges(nodes)
|
72 |
+
# max_level = max(levels.values(), default=0)
|
73 |
+
|
74 |
+
# # Calculate positions
|
75 |
+
# positions = {}
|
76 |
+
# level_heights = defaultdict(int)
|
77 |
+
# for node, level in levels.items():
|
78 |
+
# level_heights[level] += 1
|
79 |
+
|
80 |
+
# y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()}
|
81 |
+
# x_gap = 2
|
82 |
+
# l1_y_gap = 10
|
83 |
+
# l2_y_gap = 6
|
84 |
+
|
85 |
+
# for node, level in levels.items():
|
86 |
+
# if level == 1:
|
87 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap)
|
88 |
+
# elif level == 2:
|
89 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
90 |
+
# else:
|
91 |
+
# positions[node] = (-level * x_gap, y_offsets[level] * l2_y_gap)
|
92 |
+
# y_offsets[level] += 1
|
93 |
+
|
94 |
+
# # Function to highlight words in a wrapped node string
|
95 |
+
# def color_highlighted_words(node, color_map):
|
96 |
+
# parts = re.split(r'(\{\{.*?\}\})', node)
|
97 |
+
# colored_parts = []
|
98 |
+
# for part in parts:
|
99 |
+
# match = re.match(r'\{\{(.*?)\}\}', part)
|
100 |
+
# if match:
|
101 |
+
# word = match.group(1)
|
102 |
+
# color = color_map.get(word, 'black')
|
103 |
+
# colored_parts.append(f"<span style='color: {color};'>{word}</span>")
|
104 |
+
# else:
|
105 |
+
# colored_parts.append(part)
|
106 |
+
# return ''.join(colored_parts)
|
107 |
+
|
108 |
+
# # Create figure
|
109 |
+
# fig = go.Figure()
|
110 |
+
|
111 |
+
# # Add nodes to the figure
|
112 |
+
# for i, node in enumerate(wrapped_nodes):
|
113 |
+
# colored_node = color_highlighted_words(node, global_color_map)
|
114 |
+
# x, y = positions[i]
|
115 |
+
# fig.add_trace(go.Scatter(
|
116 |
+
# x=[-x], # Reflect the x coordinate
|
117 |
+
# y=[y],
|
118 |
+
# mode='markers',
|
119 |
+
# marker=dict(size=10, color='blue'),
|
120 |
+
# hoverinfo='none'
|
121 |
+
# ))
|
122 |
+
# fig.add_annotation(
|
123 |
+
# x=-x, # Reflect the x coordinate
|
124 |
+
# y=y,
|
125 |
+
# text=colored_node,
|
126 |
+
# showarrow=False,
|
127 |
+
# xshift=15,
|
128 |
+
# align="center",
|
129 |
+
# font=dict(size=8),
|
130 |
+
# bordercolor='black',
|
131 |
+
# borderwidth=1,
|
132 |
+
# borderpad=2,
|
133 |
+
# bgcolor='white',
|
134 |
+
# width=150
|
135 |
+
# )
|
136 |
+
|
137 |
+
# # Add edges to the figure
|
138 |
+
# for edge in edges:
|
139 |
+
# x0, y0 = positions[edge[0]]
|
140 |
+
# x1, y1 = positions[edge[1]]
|
141 |
+
# fig.add_trace(go.Scatter(
|
142 |
+
# x=[-x0, -x1], # Reflect the x coordinates
|
143 |
+
# y=[y0, y1],
|
144 |
+
# mode='lines',
|
145 |
+
# line=dict(color='black', width=1)
|
146 |
+
# ))
|
147 |
+
|
148 |
+
# fig.update_layout(
|
149 |
+
# showlegend=False,
|
150 |
+
# margin=dict(t=20, b=20, l=20, r=20),
|
151 |
+
# xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
152 |
+
# yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
|
153 |
+
# width=1200, # Adjusted width to accommodate more levels
|
154 |
+
# height=1000 # Adjusted height to accommodate more levels
|
155 |
+
# )
|
156 |
+
|
157 |
+
# return fig
|
158 |
+
|
159 |
import plotly.graph_objects as go
|
160 |
import textwrap
|
161 |
import re
|
|
|
263 |
colored_parts.append(part)
|
264 |
return ''.join(colored_parts)
|
265 |
|
266 |
+
# Define the text for each edge
|
267 |
+
edge_texts = [
|
268 |
+
"Highest Entropy Masking",
|
269 |
+
"Pseudo-random Masking",
|
270 |
+
"Random Masking",
|
271 |
+
"Greedy Sampling",
|
272 |
+
"Temperature Sampling",
|
273 |
+
"Exponential Minimum Sampling",
|
274 |
+
"Inverse Transform Sampling",
|
275 |
+
"Greedy Sampling",
|
276 |
+
"Temperature Sampling",
|
277 |
+
"Exponential Minimum Sampling",
|
278 |
+
"Inverse Transform Sampling",
|
279 |
+
"Greedy Sampling",
|
280 |
+
"Temperature Sampling",
|
281 |
+
"Exponential Minimum Sampling",
|
282 |
+
"Inverse Transform Sampling"
|
283 |
+
]
|
284 |
+
|
285 |
# Create figure
|
286 |
fig = go.Figure()
|
287 |
|
|
|
311 |
width=150
|
312 |
)
|
313 |
|
314 |
+
# Add edges and text above each edge
|
315 |
+
for i, edge in enumerate(edges):
|
316 |
x0, y0 = positions[edge[0]]
|
317 |
x1, y1 = positions[edge[1]]
|
318 |
fig.add_trace(go.Scatter(
|
|
|
322 |
line=dict(color='black', width=1)
|
323 |
))
|
324 |
|
325 |
+
# Calculate the midpoint of the edge
|
326 |
+
mid_x = (-x0 + -x1) / 2
|
327 |
+
mid_y = (y0 + y1) / 2
|
328 |
+
|
329 |
+
# Adjust y position to shift text upwards
|
330 |
+
text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards
|
331 |
+
|
332 |
+
# Add text annotation above the edge
|
333 |
+
fig.add_annotation(
|
334 |
+
x=mid_x,
|
335 |
+
y=text_y_position,
|
336 |
+
text=edge_texts[i], # Use the text specific to this edge
|
337 |
+
showarrow=False,
|
338 |
+
font=dict(size=10),
|
339 |
+
align="center"
|
340 |
+
)
|
341 |
+
|
342 |
fig.update_layout(
|
343 |
showlegend=False,
|
344 |
margin=dict(t=20, b=20, l=20, r=20),
|
|
|
348 |
height=1000 # Adjusted height to accommodate more levels
|
349 |
)
|
350 |
|
351 |
+
return fig
|
352 |
+
|