import plotly.graph_objects as go import textwrap import re from collections import defaultdict def generate_subplot1(paraphrased_sentence, scheme_sentences, highlight_info, common_grams): # Combine nodes into one list with appropriate labels nodes = [paraphrased_sentence] + scheme_sentences nodes[0] += ' L0' # Paraphrased sentence is level 0 for i in range(1, len(nodes)): nodes[i] += ' L1' # Scheme sentences are level 1 # Function to apply LCS numbering based on common_grams def apply_lcs_numbering(sentence, common_grams): for idx, lcs in common_grams: # Only replace if the LCS is a whole word (not part of another word) sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence) return sentence # Apply LCS numbering nodes = [apply_lcs_numbering(node, common_grams) for node in nodes] # Define the highlight_words function def highlight_words(sentence, color_map): for word, color in color_map.items(): sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE) return sentence # Clean and wrap nodes, and highlight specified words globally cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes] global_color_map = dict(highlight_info) highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes] wrapped_nodes = ['
'.join(textwrap.wrap(node, width=55)) for node in highlighted_nodes] # Function to determine tree levels and create edges dynamically def get_levels_and_edges(nodes): levels = {} edges = [] for i, node in enumerate(nodes): level = int(node.split()[-1][1]) levels[i] = level # Add edges from L0 to all L1 nodes root_node = next(i for i, level in levels.items() if level == 0) for i, level in levels.items(): if level == 1: edges.append((root_node, i)) return levels, edges # Get levels and dynamic edges levels, edges = get_levels_and_edges(nodes) max_level = max(levels.values(), default=0) # Calculate positions positions = {} level_heights = defaultdict(int) for node, level in levels.items(): level_heights[level] += 1 y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()} x_gap = 2 l1_y_gap = 10 for node, level in levels.items(): if level == 1: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) else: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) y_offsets[level] += 1 # Function to highlight words in a wrapped node string def color_highlighted_words(node, color_map): parts = re.split(r'(\{\{.*?\}\})', node) colored_parts = [] for part in parts: match = re.match(r'\{\{(.*?)\}\}', part) if match: word = match.group(1) color = color_map.get(word, 'black') colored_parts.append(f"{word}") else: colored_parts.append(part) return ''.join(colored_parts) # Define the text for each edge edge_texts = [ "Highest Entropy Masking", "Pseudo-random Masking", "Random Masking", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling" ] # Create figure fig1 = go.Figure() # Add nodes to the figure for i, node in enumerate(wrapped_nodes): colored_node = color_highlighted_words(node, global_color_map) x, y = positions[i] fig1.add_trace(go.Scatter( x=[-x], # Reflect the x coordinate y=[y], mode='markers', marker=dict(size=10, color='blue'), hoverinfo='none' )) fig1.add_annotation( x=-x, # Reflect the x coordinate y=y, text=colored_node, showarrow=False, xshift=15, align="center", font=dict(size=12), bordercolor='black', borderwidth=1, borderpad=2, bgcolor='white', width=300, height=120 ) # Add edges and text above each edge for i, edge in enumerate(edges): x0, y0 = positions[edge[0]] x1, y1 = positions[edge[1]] fig1.add_trace(go.Scatter( x=[-x0, -x1], # Reflect the x coordinates y=[y0, y1], mode='lines', line=dict(color='black', width=1) )) # Calculate the midpoint of the edge mid_x = (-x0 + -x1) / 2 mid_y = (y0 + y1) / 2 # Adjust y position to shift text upwards text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards # Add text annotation above the edge fig1.add_annotation( x=mid_x, y=text_y_position, text=edge_texts[i], # Use the text specific to this edge showarrow=False, font=dict(size=12), align="center" ) fig1.update_layout( showlegend=False, margin=dict(t=20, b=20, l=20, r=20), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), width=1435, # Adjusted width to accommodate more levels height=1000 # Adjusted height to accommodate more levels ) return fig1 def generate_subplot2(scheme_sentences, sampled_sentence, highlight_info, common_grams): # Combine nodes into one list with appropriate labels nodes = scheme_sentences + sampled_sentence para_len = len(scheme_sentences) # Reassign levels: L1 -> L0, L2 -> L1 for i in range(para_len): nodes[i] += ' L0' # Scheme sentences are now level 0 for i in range(para_len, len(nodes)): nodes[i] += ' L1' # Sampled sentences are now level 1 # Function to apply LCS numbering based on common_grams def apply_lcs_numbering(sentence, common_grams): for idx, lcs in common_grams: # Only replace if the LCS is a whole word (not part of another word) sentence = re.sub(rf"\b{lcs}\b", f"({idx}){lcs}", sentence) return sentence # Apply LCS numbering nodes = [apply_lcs_numbering(node, common_grams) for node in nodes] # Define the highlight_words function def highlight_words(sentence, color_map): for word, color in color_map.items(): sentence = re.sub(f"\\b{word}\\b", f"{{{{{word}}}}}", sentence, flags=re.IGNORECASE) return sentence # Clean and wrap nodes, and highlight specified words globally cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes] global_color_map = dict(highlight_info) highlighted_nodes = [highlight_words(node, global_color_map) for node in cleaned_nodes] wrapped_nodes = ['
'.join(textwrap.wrap(node, width=80)) for node in highlighted_nodes] # Function to determine tree levels and create edges dynamically def get_levels_and_edges(nodes): levels = {} edges = [] for i, node in enumerate(nodes): level = int(node.split()[-1][1]) levels[i] = level # Add edges from L0 to all L1 nodes l0_indices = [i for i, level in levels.items() if level == 0] l1_indices = [i for i, level in levels.items() if level == 1] # Ensure there are exactly 3 L0 nodes if len(l0_indices) < 3: raise ValueError("There should be exactly 3 L0 nodes to attach edges correctly.") # Split L1 nodes into 3 groups of 4 for attaching to L0 nodes for i, l1_node in enumerate(l1_indices): if i < 4: edges.append((l0_indices[0], l1_node)) # Connect to the first L0 node elif i < 8: edges.append((l0_indices[1], l1_node)) # Connect to the second L0 node else: edges.append((l0_indices[2], l1_node)) # Connect to the third L0 node return levels, edges # Get levels and dynamic edges levels, edges = get_levels_and_edges(nodes) max_level = max(levels.values(), default=0) # Calculate positions positions = {} level_heights = defaultdict(int) for node, level in levels.items(): level_heights[level] += 1 y_offsets = {level: - (height - 1) / 2 for level, height in level_heights.items()} x_gap = 2 l1_y_gap = 10 for node, level in levels.items(): if level == 1: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) else: positions[node] = (-level * x_gap, y_offsets[level] * l1_y_gap) y_offsets[level] += 1 # Function to highlight words in a wrapped node string def color_highlighted_words(node, color_map): parts = re.split(r'(\{\{.*?\}\})', node) colored_parts = [] for part in parts: match = re.match(r'\{\{(.*?)\}\}', part) if match: word = match.group(1) color = color_map.get(word, 'black') colored_parts.append(f"{word}") else: colored_parts.append(part) return ''.join(colored_parts) # Define the text for each edge edge_texts = [ "Highest Entropy Masking", "Pseudo-random Masking", "Random Masking", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling", "Greedy Sampling", "Temperature Sampling", "Exponential Minimum Sampling", "Inverse Transform Sampling" ] # Create figure fig2 = go.Figure() # Add nodes to the figure for i, node in enumerate(wrapped_nodes): colored_node = color_highlighted_words(node, global_color_map) x, y = positions[i] fig2.add_trace(go.Scatter( x=[-x], # Reflect the x coordinate y=[y], mode='markers', marker=dict(size=10, color='blue'), hoverinfo='none' )) fig2.add_annotation( x=-x, # Reflect the x coordinate y=y, text=colored_node, showarrow=False, xshift=15, align="center", font=dict(size=12), bordercolor='black', borderwidth=1, borderpad=2, bgcolor='white', width=450, height=65 ) # Add edges and text above each edge for i, edge in enumerate(edges): x0, y0 = positions[edge[0]] x1, y1 = positions[edge[1]] fig2.add_trace(go.Scatter( x=[-x0, -x1], # Reflect the x coordinates y=[y0, y1], mode='lines', line=dict(color='black', width=1) )) # Calculate the midpoint of the edge mid_x = (-x0 + -x1) / 2 mid_y = (y0 + y1) / 2 # Adjust y position to shift text upwards text_y_position = mid_y + 0.8 # Increase this value to shift the text further upwards # Add text annotation above the edge # Use a fallback text if we exceed the length of edge_texts text = edge_texts[i] if i < len(edge_texts) else f"Edge {i+1}" fig2.add_annotation( x=mid_x, y=text_y_position, text=text, # Use the text specific to this edge showarrow=False, font=dict(size=12), align="center" ) fig2.update_layout( showlegend=False, margin=dict(t=20, b=20, l=20, r=20), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), width=1435, # Adjusted width to accommodate more levels height=1000 # Adjusted height to accommodate more levels ) return fig2