#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Twokenize -- a tokenizer designed for Twitter text in English and some other European languages. This tokenizer code has gone through a long history: (1) Brendan O'Connor wrote original version in Python, http://github.com/brendano/tweetmotif TweetMotif: Exploratory Search and Topic Summarization for Twitter. Brendan O'Connor, Michel Krieger, and David Ahn. ICWSM-2010 (demo track), http://brenocon.com/oconnor_krieger_ahn.icwsm2010.tweetmotif.pdf (2a) Kevin Gimpel and Daniel Mills modified it for POS tagging for the CMU ARK Twitter POS Tagger (2b) Jason Baldridge and David Snyder ported it to Scala (3) Brendan bugfixed the Scala port and merged with POS-specific changes for the CMU ARK Twitter POS Tagger (4) Tobi Owoputi ported it back to Java and added many improvements (2012-06) Current home is http://github.com/brendano/ark-tweet-nlp and http://www.ark.cs.cmu.edu/TweetNLP There have been at least 2 other Java ports, but they are not in the lineage for the code here. Ported to Python by Myle Ott . """ from __future__ import unicode_literals import operator import re import sys try: from html.parser import HTMLParser except ImportError: from HTMLParser import HTMLParser try: import html except ImportError: pass def regex_or(*items): return '(?:' + '|'.join(items) + ')' Contractions = re.compile(u"(?i)(\w+)(n['’′]t|['’′]ve|['’′]ll|['’′]d|['’′]re|['’′]s|['’′]m)$", re.UNICODE) Whitespace = re.compile(u"[\s\u0020\u00a0\u1680\u180e\u202f\u205f\u3000\u2000-\u200a]+", re.UNICODE) punctChars = r"['\"“”‘’.?!…,:;]" #punctSeq = punctChars+"+" #'anthem'. => ' anthem '. punctSeq = r"['\"“”‘’]+|[.?!,…]+|[:;]+" #'anthem'. => ' anthem ' . entity = r"&(?:amp|lt|gt|quot);" # URLs # BTO 2012-06: everyone thinks the daringfireball regex should be better, but they're wrong. # If you actually empirically test it the results are bad. # Please see https://github.com/brendano/ark-tweet-nlp/pull/9 urlStart1 = r"(?:https?://|\bwww\.)" commonTLDs = r"(?:com|org|edu|gov|net|mil|aero|asia|biz|cat|coop|info|int|jobs|mobi|museum|name|pro|tel|travel|xxx)" ccTLDs = r"(?:ac|ad|ae|af|ag|ai|al|am|an|ao|aq|ar|as|at|au|aw|ax|az|ba|bb|bd|be|bf|bg|bh|bi|bj|bm|bn|bo|br|bs|bt|" + \ r"bv|bw|by|bz|ca|cc|cd|cf|cg|ch|ci|ck|cl|cm|cn|co|cr|cs|cu|cv|cx|cy|cz|dd|de|dj|dk|dm|do|dz|ec|ee|eg|eh|" + \ r"er|es|et|eu|fi|fj|fk|fm|fo|fr|ga|gb|gd|ge|gf|gg|gh|gi|gl|gm|gn|gp|gq|gr|gs|gt|gu|gw|gy|hk|hm|hn|hr|ht|" + \ r"hu|id|ie|il|im|in|io|iq|ir|is|it|je|jm|jo|jp|ke|kg|kh|ki|km|kn|kp|kr|kw|ky|kz|la|lb|lc|li|lk|lr|ls|lt|" + \ r"lu|lv|ly|ma|mc|md|me|mg|mh|mk|ml|mm|mn|mo|mp|mq|mr|ms|mt|mu|mv|mw|mx|my|mz|na|nc|ne|nf|ng|ni|nl|no|np|" + \ r"nr|nu|nz|om|pa|pe|pf|pg|ph|pk|pl|pm|pn|pr|ps|pt|pw|py|qa|re|ro|rs|ru|rw|sa|sb|sc|sd|se|sg|sh|si|sj|sk|" + \ r"sl|sm|sn|so|sr|ss|st|su|sv|sy|sz|tc|td|tf|tg|th|tj|tk|tl|tm|tn|to|tp|tr|tt|tv|tw|tz|ua|ug|uk|us|uy|uz|" + \ r"va|vc|ve|vg|vi|vn|vu|wf|ws|ye|yt|za|zm|zw)" #TODO: remove obscure country domains? urlStart2 = r"\b(?:[A-Za-z\d-])+(?:\.[A-Za-z0-9]+){0,3}\." + regex_or(commonTLDs, ccTLDs) + r"(?:\."+ccTLDs+r")?(?=\W|$)" urlBody = r"(?:[^\.\s<>][^\s<>]*?)?" urlExtraCrapBeforeEnd = regex_or(punctChars, entity) + "+?" urlEnd = r"(?:\.\.+|[<>]|\s|$)" url = regex_or(urlStart1, urlStart2) + urlBody + "(?=(?:"+urlExtraCrapBeforeEnd+")?"+urlEnd+")" # Numeric timeLike = r"\d+(?::\d+){1,2}" #numNum = r"\d+\.\d+" numberWithCommas = r"(?:(?|>)[\._-]+(?:<|<|>|>)" s5 = "(?:[.][_]+[.])" # myleott: in Python the (?i) flag affects the whole expression #basicface = "(?:(?i)" +bfLeft+bfCenter+bfRight+ ")|" +s3+ "|" +s4+ "|" + s5 basicface = "(?:" +bfLeft+bfCenter+bfRight+ ")|" +s3+ "|" +s4+ "|" + s5 eeLeft = r"[\\\ƪԄ\((<>;ヽ\-=~\*]+" eeRight= u"[\\-=\\);'\u0022<>ʃ)//ノノ丿╯σっµ~\\*]+" eeSymbol = r"[^A-Za-z0-9\s\(\)\*:=-]" eastEmote = eeLeft + "(?:"+basicface+"|" +eeSymbol+")+" + eeRight oOEmote = r"(?:[oO]" + bfCenter + r"[oO])" emoticon = regex_or( # Standard version :) :( :] :D :P "(?:>|>)?" + regex_or(normalEyes, wink) + regex_or(noseArea,"[Oo]") + regex_or(tongue+r"(?=\W|$|RT|rt|Rt)", otherMouths+r"(?=\W|$|RT|rt|Rt)", sadMouths, happyMouths), # reversed version (: D: use positive lookbehind to remove "(word):" # because eyes on the right side is more ambiguous with the standard usage of : ; regex_or("(?<=(?: ))", "(?<=(?:^))") + regex_or(sadMouths,happyMouths,otherMouths) + noseArea + regex_or(normalEyes, wink) + "(?:<|<)?", #inspired by http://en.wikipedia.org/wiki/User:Scapler/emoticons#East_Asian_style eastEmote.replace("2", "1", 1), basicface, # iOS 'emoji' characters (some smileys, some symbols) [\ue001-\uebbb] # TODO should try a big precompiled lexicon from Wikipedia, Dan Ramage told me (BTO) he does this # myleott: o.O and O.o are two of the biggest sources of differences # between this and the Java version. One little hack won't hurt... oOEmote ) Hearts = "(?:<+/?3+)+" #the other hearts are in decorations Arrows = regex_or(r"(?:<*[-―—=]*>+|<+[-―—=]*>*)", u"[\u2190-\u21ff]+") # BTO 2011-06: restored Hashtag, AtMention protection (dropped in original scala port) because it fixes # "hello (#hashtag)" ==> "hello (#hashtag )" WRONG # "hello (#hashtag)" ==> "hello ( #hashtag )" RIGHT # "hello (@person)" ==> "hello (@person )" WRONG # "hello (@person)" ==> "hello ( @person )" RIGHT # ... Some sort of weird interaction with edgepunct I guess, because edgepunct # has poor content-symbol detection. # This also gets #1 #40 which probably aren't hashtags .. but good as tokens. # If you want good hashtag identification, use a different regex. Hashtag = "#[a-zA-Z0-9_]+" #optional: lookbehind for \b #optional: lookbehind for \b, max length 15 AtMention = "[@@][a-zA-Z0-9_]+" # I was worried this would conflict with at-mentions # but seems ok in sample of 5800: 7 changes all email fixes # http://www.regular-expressions.info/email.html Bound = r"(?:\W|^|$)" Email = regex_or("(?<=(?:\W))", "(?<=(?:^))") + r"[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}(?=" +Bound+")" # We will be tokenizing using these regexps as delimiters # Additionally, these things are "protected", meaning they shouldn't be further split themselves. Protected = re.compile( regex_or( Hearts, url, Email, timeLike, #numNum, numberWithCommas, numComb, emoticon, Arrows, entity, punctSeq, arbitraryAbbrev, separators, decorations, embeddedApostrophe, Hashtag, AtMention), re.UNICODE) # Edge punctuation # Want: 'foo' => ' foo ' # While also: don't => don't # the first is considered "edge punctuation". # the second is word-internal punctuation -- don't want to mess with it. # BTO (2011-06): the edgepunct system seems to be the #1 source of problems these days. # I remember it causing lots of trouble in the past as well. Would be good to revisit or eliminate. # Note the 'smart quotes' (http://en.wikipedia.org/wiki/Smart_quotes) #edgePunctChars = r"'\"“”‘’«»{}\(\)\[\]\*&" #add \\p{So}? (symbols) edgePunctChars = u"'\"“”‘’«»{}\\(\\)\\[\\]\\*&" #add \\p{So}? (symbols) edgePunct = "[" + edgePunctChars + "]" notEdgePunct = "[a-zA-Z0-9]" # content characters offEdge = r"(^|$|:|;|\s|\.|,)" # colon here gets "(hello):" ==> "( hello ):" EdgePunctLeft = re.compile(offEdge + "("+edgePunct+"+)("+notEdgePunct+")", re.UNICODE) EdgePunctRight = re.compile("("+notEdgePunct+")("+edgePunct+"+)" + offEdge, re.UNICODE) def splitEdgePunct(input): input = EdgePunctLeft.sub(r"\1\2 \3", input) input = EdgePunctRight.sub(r"\1 \2\3", input) return input # The main work of tokenizing a tweet. def simpleTokenize(text): # Do the no-brainers first splitPunctText = splitEdgePunct(text) textLength = len(splitPunctText) # BTO: the logic here got quite convoluted via the Scala porting detour # It would be good to switch back to a nice simple procedural style like in the Python version # ... Scala is such a pain. Never again. # Find the matches for subsequences that should be protected, # e.g. URLs, 1.0, U.N.K.L.E., 12:53 bads = [] badSpans = [] for match in Protected.finditer(splitPunctText): # The spans of the "bads" should not be split. if (match.start() != match.end()): #unnecessary? bads.append( [splitPunctText[match.start():match.end()]] ) badSpans.append( (match.start(), match.end()) ) # Create a list of indices to create the "goods", which can be # split. We are taking "bad" spans like # List((2,5), (8,10)) # to create # List(0, 2, 5, 8, 10, 12) # where, e.g., "12" here would be the textLength # has an even length and no indices are the same indices = [0] for (first, second) in badSpans: indices.append(first) indices.append(second) indices.append(textLength) # Group the indices and map them to their respective portion of the string splitGoods = [] for i in range(0, len(indices), 2): goodstr = splitPunctText[indices[i]:indices[i+1]] splitstr = goodstr.strip().split(" ") splitGoods.append(splitstr) # Reinterpolate the 'good' and 'bad' Lists, ensuring that # additonal tokens from last good item get included zippedStr = [] for i in range(len(bads)): zippedStr = addAllnonempty(zippedStr, splitGoods[i]) zippedStr = addAllnonempty(zippedStr, bads[i]) zippedStr = addAllnonempty(zippedStr, splitGoods[len(bads)]) # BTO: our POS tagger wants "ur" and "you're" to both be one token. # Uncomment to get "you 're" #splitStr = [] #for tok in zippedStr: # splitStr.extend(splitToken(tok)) #zippedStr = splitStr return zippedStr def addAllnonempty(master, smaller): for s in smaller: strim = s.strip() if (len(strim) > 0): master.append(strim) return master # "foo bar " => "foo bar" def squeezeWhitespace(input): return Whitespace.sub(" ", input).strip() # Final pass tokenization based on special patterns def splitToken(token): m = Contractions.search(token) if m: return [m.group(1), m.group(2)] return [token] # Assume 'text' has no HTML escaping. def tokenize(text): return simpleTokenize(squeezeWhitespace(text)) # Twitter text comes HTML-escaped, so unescape it. # We also first unescape &'s, in case the text has been buggily double-escaped. def normalizeTextForTagger(text): assert sys.version_info[0] >= 3 and sys.version_info[1] > 3, 'Python version >3.3 required' text = text.replace("&", "&") text = html.unescape(text) return text # This is intended for raw tweet text -- we do some HTML entity unescaping before running the tagger. # # This function normalizes the input text BEFORE calling the tokenizer. # So the tokens you get back may not exactly correspond to # substrings of the original text. def tokenizeRawTweetText(text): tokens = tokenize(normalizeTextForTagger(text)) return tokens def tokenize_sentences(all_sentences): sent_list = [] for sentence in all_sentences: sent_list.append(' '.join(tokenizeRawTweetText(sentence))) return sent_list def tokenize_sentence(sentence): return ' '.join(tokenizeRawTweetText(sentence))