jgyasu's picture
Update app.py
9e1613b verified
# -*- coding: utf-8 -*-
"""text-paraphraser.ipynb
Automatically generated by Colab.
Original file is located at
https://colab.research.google.com/drive/1pFGR4uvXMMWVJFQeFmn--arumSxqa5Yy
"""
from transformers import AutoTokenizer
from transformers import AutoModelForSeq2SeqLM
import plotly.graph_objs as go
import textwrap
from transformers import pipeline
import re
import time
import requests
from PIL import Image
import itertools
import numpy as np
import matplotlib.pyplot as plt
import matplotlib
from matplotlib.colors import ListedColormap, rgb2hex
import ipywidgets as widgets
from IPython.display import display, HTML
import pandas as pd
from pprint import pprint
from tenacity import retry
from tqdm import tqdm
# import tiktoken
import scipy.stats
import torch
from transformers import GPT2LMHeadModel
import seaborn as sns
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM
# from colorama import Fore, Style
# import openai
import random
from nltk.corpus import stopwords
from termcolor import colored
import nltk
from nltk.translate.bleu_score import sentence_bleu
from transformers import BertTokenizer, BertModel
import graphviz
import gradio as gr
nltk.download('stopwords')
# Function to Initialize the Model
def init_model():
para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base")
return para_tokenizer, para_model
# Function to Paraphrase the Text
def paraphrase(question, para_tokenizer, para_model, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=64):
input_ids = para_tokenizer(
f'paraphrase: {question}',
return_tensors="pt", padding="longest",
max_length=max_length,
truncation=True,
).input_ids
outputs = para_model.generate(
input_ids, temperature=temperature, repetition_penalty=repetition_penalty,
num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size,
num_beams=num_beams, num_beam_groups=num_beam_groups,
max_length=max_length, diversity_penalty=diversity_penalty
)
res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True)
return res
# Function to Find the Longest Common Substring Words Subsequence
def longest_common_subss(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for sentence in paraphrased_sentences_no_stopwords:
common_words = set(original_sentence_lower.split()) & set(sentence.split())
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
"Original Sentence": original_sentence_lower,
"Paraphrased Sentence": sentence,
"Substrings Word Pair": common_words
})
return results
# Function to Find Common Substring Word between each paraphrase sentences
def common_substring_word(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function to Watermark a Word Take Randomly Between Each lcs Point (Random Sampling)
def random_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
word_to_mark = random.choice(words_to_replace)
sentence = sentence.replace(word_to_mark, colored(word_to_mark, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Inverse Transform Sampling
def inverse_transform_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
probabilities = [1 / len(words_to_replace)] * len(words_to_replace)
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
sentence = sentence.replace(chosen_word, colored(chosen_word, 'magenta'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Contextual Sampling
def contextual_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
context = " ".join([word for word in sentence.split() if word not in common_words])
chosen_word = random.choice(words_to_replace)
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function for Exponential Minimum Sampling
def exponential_minimum_sampling(original_sentence, paraphrased_sentences):
stop_words = set(stopwords.words('english'))
original_sentence_lower = original_sentence.lower()
paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences]
paraphrased_sentences_no_stopwords = []
for sentence in paraphrased_sentences_lower:
words = re.findall(r'\b\w+\b', sentence)
filtered_sentence = ' '.join([word for word in words if word not in stop_words])
paraphrased_sentences_no_stopwords.append(filtered_sentence)
results = []
for idx, sentence in enumerate(paraphrased_sentences_no_stopwords):
common_words = set(original_sentence_lower.split()) & set(sentence.split())
common_substrings = ', '.join(sorted(common_words))
words_to_replace = [word for word in sentence.split() if word not in common_words]
if words_to_replace:
num_words = len(words_to_replace)
probabilities = [2 ** (-i) for i in range(num_words)]
chosen_word = random.choices(words_to_replace, weights=probabilities)[0]
sentence = sentence.replace(chosen_word, colored(chosen_word, 'red'))
for word in common_words:
sentence = sentence.replace(word, colored(word, 'green'))
results.append({
f"Paraphrased Sentence {idx+1}": sentence,
"Common Substrings": common_substrings
})
return results
# Function to Calculate the BLEU score
def calculate_bleu(reference, candidate):
return sentence_bleu([reference], candidate)
# Function to calculate BERT score
def calculate_bert(reference, candidate):
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
reference_tokens = tokenizer.tokenize(reference)
candidate_tokens = tokenizer.tokenize(candidate)
reference_ids = tokenizer.encode(reference, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt")
candidate_ids = tokenizer.encode(candidate, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt")
with torch.no_grad():
reference_outputs = model(reference_ids)
candidate_outputs = model(candidate_ids)
reference_embeddings = reference_outputs[0][:, 0, :].numpy()
candidate_embeddings = candidate_outputs[0][:, 0, :].numpy()
cosine_similarity = np.dot(reference_embeddings, candidate_embeddings.T) / (np.linalg.norm(reference_embeddings) * np.linalg.norm(candidate_embeddings))
return np.mean(cosine_similarity)
# Function to calculate minimum edit distance
def min_edit_distance(reference, candidate):
m = len(reference)
n = len(candidate)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m + 1):
for j in range(n + 1):
if i == 0:
dp[i][j] = j
elif j == 0:
dp[i][j] = i
elif reference[i - 1] == candidate[j - 1]:
dp[i][j] = dp[i - 1][j - 1]
else:
dp[i][j] = 1 + min(dp[i][j - 1], # Insert
dp[i - 1][j], # Remove
dp[i - 1][j - 1]) # Replace
return dp[m][n]
def generate_paraphrase(question):
para_tokenizer, para_model = init_model()
res = paraphrase(question, para_tokenizer, para_model)
return res
question = "Following the declaration of the State of Israel in 1948, neighboring Arab states invaded. The war ended with Israel controlling a significant portion of the territory. Many Palestinians became refugees."
import re
from nltk.corpus import stopwords
def find_common_subsequences(sentence, str_list):
stop_words = set(stopwords.words('english'))
sentence = sentence.lower()
str_list = [s.lower() for s in str_list]
def is_present(lcs, str_list):
for string in str_list:
if lcs not in string:
return False
return True
def remove_stop_words_and_special_chars(sentence):
sentence = re.sub(r'[^\w\s]', '', sentence)
words = sentence.split()
filtered_words = [word for word in words if word.lower() not in stop_words]
return " ".join(filtered_words)
sentence = remove_stop_words_and_special_chars(sentence)
str_list = [remove_stop_words_and_special_chars(s) for s in str_list]
words = sentence.split(" ")
common_grams = []
added_phrases = set()
def is_covered(subseq, added_phrases):
for phrase in added_phrases:
if subseq in phrase:
return True
return False
for i in range(len(words) - 4):
penta = " ".join(words[i:i+5])
if is_present(penta, str_list):
common_grams.append(penta)
added_phrases.add(penta)
for i in range(len(words) - 3):
quad = " ".join(words[i:i+4])
if is_present(quad, str_list) and not is_covered(quad, added_phrases):
common_grams.append(quad)
added_phrases.add(quad)
for i in range(len(words) - 2):
tri = " ".join(words[i:i+3])
if is_present(tri, str_list) and not is_covered(tri, added_phrases):
common_grams.append(tri)
added_phrases.add(tri)
for i in range(len(words) - 1):
bi = " ".join(words[i:i+2])
if is_present(bi, str_list) and not is_covered(bi, added_phrases):
common_grams.append(bi)
added_phrases.add(bi)
for i in range(len(words)):
uni = words[i]
if is_present(uni, str_list) and not is_covered(uni, added_phrases):
common_grams.append(uni)
added_phrases.add(uni)
return common_grams
def llm_output(prompt):
return prompt, prompt
def highlight_phrases_with_colors(sentences, phrases):
color_map = {}
color_index = 0
highlighted_html = []
idx = 1
for sentence in sentences:
sentence_with_idx = f"{idx}. {sentence}"
idx += 1
highlighted_sentence = sentence_with_idx
phrase_count = 0
words = re.findall(r'\b\w+\b', sentence)
word_index = 1
for phrase in phrases:
if phrase not in color_map:
color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)'
color_index += 1
escaped_phrase = re.escape(phrase)
pattern = rf'\b{escaped_phrase}\b'
highlighted_sentence, num_replacements = re.subn(
pattern,
lambda m, count=phrase_count, color=color_map[phrase], index=word_index: (
f'<span style="background-color: {color}; font-weight: bold;'
f' padding: 2px 4px; border-radius: 2px; position: relative;">'
f'<span style="background-color: black; color: white; border-radius: 50%;'
f' padding: 2px 5px; margin-right: 5px;">{index}</span>'
f'{m.group(0)}'
f'</span>'
),
highlighted_sentence,
flags=re.IGNORECASE
)
if num_replacements > 0:
phrase_count += 1
word_index += 1
highlighted_html.append(highlighted_sentence)
final_html = "<br><br>".join(highlighted_html)
return f'''
<div style="border: solid 1px #; padding: 16px; background-color: #FFFFFF; color: #374151; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); border-radius: 2px;">
<h3 style="margin-top: 0; font-size: 1em; color: #111827;">Paraphrased And Highlighted Text</h3>
<div style="background-color: #F5F5F5; line-height: 1.6; padding: 15px; border-radius: 2px;">{final_html}</div>
</div>
'''
# Masking Model
def mask_non_stopword(sentence):
stop_words = set(stopwords.words('english'))
words = sentence.split()
non_stop_words = [word for word in words if word.lower() not in stop_words]
if not non_stop_words:
return sentence
word_to_mask = random.choice(non_stop_words)
masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1)
return masked_sentence
# Load tokenizer and model for masked language model
tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking")
model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking")
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
def mask(sentence):
predictions = fill_mask(sentence)
masked_sentences = [predictions[i]['sequence'] for i in range(len(predictions))]
return masked_sentences
#plotly tree
import plotly.graph_objs as go
import textwrap
import re
from collections import defaultdict
def generate_plot(original_sentence):
paraphrased_sentences = generate_paraphrase(original_sentence)
first_paraphrased_sentence = paraphrased_sentences[0]
masked_sentence = mask_non_stopword(first_paraphrased_sentence)
masked_versions = mask(masked_sentence)
nodes = []
nodes.append(original_sentence)
nodes.extend(paraphrased_sentences)
nodes.extend(masked_versions)
nodes[0] += ' L0'
para_len = len(paraphrased_sentences)
for i in range(1, para_len+1):
nodes[i] += ' L1'
for i in range(para_len+1, len(nodes)):
nodes[i] += ' L2'
cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes]
wrapped_nodes = ['<br>'.join(textwrap.wrap(node, width=30)) for node in cleaned_nodes]
def get_levels_and_edges(nodes):
levels = {}
edges = []
for i, node in enumerate(nodes):
level = int(node.split()[-1][1])
levels[i] = level
# Add edges from L0 to all L1 nodes
root_node = next(i for i, level in levels.items() if level == 0)
for i, level in levels.items():
if level == 1:
edges.append((root_node, i))
# Identify the first L1 node
first_l1_node = next(i for i, level in levels.items() if level == 1)
# Add edges from the first L1 node to all L2 nodes
for i, level in levels.items():
if level == 2:
edges.append((first_l1_node, i))
return levels, edges
# Get levels and dynamic edges
levels, edges = get_levels_and_edges(nodes)
max_level = max(levels.values())
# Calculate positions
positions = {}
level_widths = defaultdict(int)
for node, level in levels.items():
level_widths[level] += 1
x_offsets = {level: - (width - 1) / 2 for level, width in level_widths.items()}
y_gap = 4
for node, level in levels.items():
positions[node] = (x_offsets[level], -level * y_gap)
x_offsets[level] += 1
# Create figure
fig = go.Figure()
# Add nodes to the figure
for i, node in enumerate(wrapped_nodes):
x, y = positions[i]
fig.add_trace(go.Scatter(
x=[x],
y=[y],
mode='markers',
marker=dict(size=10, color='blue'),
hoverinfo='none'
))
fig.add_annotation(
x=x,
y=y,
text=node,
showarrow=False,
yshift=20, # Adjust the y-shift value to avoid overlap
align="center",
font=dict(size=10),
bordercolor='black',
borderwidth=1,
borderpad=4,
bgcolor='white',
width=200
)
# Add edges to the figure
for edge in edges:
x0, y0 = positions[edge[0]]
x1, y1 = positions[edge[1]]
fig.add_trace(go.Scatter(
x=[x0, x1],
y=[y0, y1],
mode='lines',
line=dict(color='black', width=2)
))
fig.update_layout(
showlegend=False,
margin=dict(t=50, b=50, l=50, r=50),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
width=1470,
height=800 # Increase height to provide more space
)
return masked_sentence, masked_versions, fig
# Function for the Gradio interface
def model(prompt):
generated, sentence = llm_output(prompt)
res = generate_paraphrase(sentence)
common_subs = longest_common_subss(sentence, res)
common_grams = find_common_subsequences(sentence, res)
for i in range(len(common_subs)):
common_subs[i]["Paraphrased Sentence"] = res[i]
result = highlight_phrases_with_colors(res, common_grams)
masked_sentence, masked_versions, tree = generate_plot(sentence)
return generated, generated, result, masked_sentence, masked_versions, tree
with gr.Blocks(theme = gr.themes.Monochrome()) as demo:
gr.Markdown("# Paraphrases the Text and Highlights the Non-melting Points")
with gr.Row():
user_input = gr.Textbox(label="User Prompt")
with gr.Row():
submit_button = gr.Button("Submit")
clear_button = gr.Button("Clear")
with gr.Row():
ai_output = gr.Textbox(label="AI-generated Text (Llama3)")
with gr.Row():
selected_sentence = gr.Textbox(label="Selected Sentence")
with gr.Row():
html_output = gr.HTML()
with gr.Row():
masked_sentence = gr.Textbox(label="Masked Sentence")
with gr.Row():
masked_versions = gr.Textbox(label="Sentence Generated by Masking Model")
with gr.Row():
tree = gr.Plot()
submit_button.click(model, inputs=user_input, outputs=[ai_output, selected_sentence, html_output, masked_sentence, masked_versions, tree])
clear_button.click(lambda: "", inputs=None, outputs=user_input)
clear_button.click(lambda: "", inputs=None, outputs=[ai_output, selected_sentence, html_output, masked_sentence, masked_versions, tree])
# Launch the demo
demo.launch(share=True)