# -*- coding: utf-8 -*- """text-paraphraser.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1pFGR4uvXMMWVJFQeFmn--arumSxqa5Yy """ from transformers import AutoTokenizer from transformers import AutoModelForSeq2SeqLM import plotly.graph_objs as go import textwrap from transformers import pipeline import re import time import requests from PIL import Image import itertools import numpy as np import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import ListedColormap, rgb2hex import ipywidgets as widgets from IPython.display import display, HTML import pandas as pd from pprint import pprint from tenacity import retry from tqdm import tqdm # import tiktoken import scipy.stats import torch from transformers import GPT2LMHeadModel import seaborn as sns from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForMaskedLM # from colorama import Fore, Style # import openai import random from nltk.corpus import stopwords from termcolor import colored import nltk from nltk.translate.bleu_score import sentence_bleu from transformers import BertTokenizer, BertModel import graphviz import gradio as gr nltk.download('stopwords') # Function to Initialize the Model def init_model(): para_tokenizer = AutoTokenizer.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") para_model = AutoModelForSeq2SeqLM.from_pretrained("humarin/chatgpt_paraphraser_on_T5_base") return para_tokenizer, para_model # Function to Paraphrase the Text def paraphrase(question, para_tokenizer, para_model, num_beams=5, num_beam_groups=5, num_return_sequences=5, repetition_penalty=10.0, diversity_penalty=3.0, no_repeat_ngram_size=2, temperature=0.7, max_length=64): input_ids = para_tokenizer( f'paraphrase: {question}', return_tensors="pt", padding="longest", max_length=max_length, truncation=True, ).input_ids outputs = para_model.generate( input_ids, temperature=temperature, repetition_penalty=repetition_penalty, num_return_sequences=num_return_sequences, no_repeat_ngram_size=no_repeat_ngram_size, num_beams=num_beams, num_beam_groups=num_beam_groups, max_length=max_length, diversity_penalty=diversity_penalty ) res = para_tokenizer.batch_decode(outputs, skip_special_tokens=True) return res # Function to Find the Longest Common Substring Words Subsequence def longest_common_subss(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for sentence in paraphrased_sentences_no_stopwords: common_words = set(original_sentence_lower.split()) & set(sentence.split()) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ "Original Sentence": original_sentence_lower, "Paraphrased Sentence": sentence, "Substrings Word Pair": common_words }) return results # Function to Find Common Substring Word between each paraphrase sentences def common_substring_word(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results # Function to Watermark a Word Take Randomly Between Each lcs Point (Random Sampling) def random_sampling(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) words_to_replace = [word for word in sentence.split() if word not in common_words] if words_to_replace: word_to_mark = random.choice(words_to_replace) sentence = sentence.replace(word_to_mark, colored(word_to_mark, 'red')) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results # Function for Inverse Transform Sampling def inverse_transform_sampling(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) words_to_replace = [word for word in sentence.split() if word not in common_words] if words_to_replace: probabilities = [1 / len(words_to_replace)] * len(words_to_replace) chosen_word = random.choices(words_to_replace, weights=probabilities)[0] sentence = sentence.replace(chosen_word, colored(chosen_word, 'magenta')) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results # Function for Contextual Sampling def contextual_sampling(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) words_to_replace = [word for word in sentence.split() if word not in common_words] if words_to_replace: context = " ".join([word for word in sentence.split() if word not in common_words]) chosen_word = random.choice(words_to_replace) sentence = sentence.replace(chosen_word, colored(chosen_word, 'red')) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results # Function for Exponential Minimum Sampling def exponential_minimum_sampling(original_sentence, paraphrased_sentences): stop_words = set(stopwords.words('english')) original_sentence_lower = original_sentence.lower() paraphrased_sentences_lower = [s.lower() for s in paraphrased_sentences] paraphrased_sentences_no_stopwords = [] for sentence in paraphrased_sentences_lower: words = re.findall(r'\b\w+\b', sentence) filtered_sentence = ' '.join([word for word in words if word not in stop_words]) paraphrased_sentences_no_stopwords.append(filtered_sentence) results = [] for idx, sentence in enumerate(paraphrased_sentences_no_stopwords): common_words = set(original_sentence_lower.split()) & set(sentence.split()) common_substrings = ', '.join(sorted(common_words)) words_to_replace = [word for word in sentence.split() if word not in common_words] if words_to_replace: num_words = len(words_to_replace) probabilities = [2 ** (-i) for i in range(num_words)] chosen_word = random.choices(words_to_replace, weights=probabilities)[0] sentence = sentence.replace(chosen_word, colored(chosen_word, 'red')) for word in common_words: sentence = sentence.replace(word, colored(word, 'green')) results.append({ f"Paraphrased Sentence {idx+1}": sentence, "Common Substrings": common_substrings }) return results # Function to Calculate the BLEU score def calculate_bleu(reference, candidate): return sentence_bleu([reference], candidate) # Function to calculate BERT score def calculate_bert(reference, candidate): tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') model = BertModel.from_pretrained('bert-base-uncased') reference_tokens = tokenizer.tokenize(reference) candidate_tokens = tokenizer.tokenize(candidate) reference_ids = tokenizer.encode(reference, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt") candidate_ids = tokenizer.encode(candidate, add_special_tokens=True, max_length=512, truncation=True, return_tensors="pt") with torch.no_grad(): reference_outputs = model(reference_ids) candidate_outputs = model(candidate_ids) reference_embeddings = reference_outputs[0][:, 0, :].numpy() candidate_embeddings = candidate_outputs[0][:, 0, :].numpy() cosine_similarity = np.dot(reference_embeddings, candidate_embeddings.T) / (np.linalg.norm(reference_embeddings) * np.linalg.norm(candidate_embeddings)) return np.mean(cosine_similarity) # Function to calculate minimum edit distance def min_edit_distance(reference, candidate): m = len(reference) n = len(candidate) dp = [[0] * (n + 1) for _ in range(m + 1)] for i in range(m + 1): for j in range(n + 1): if i == 0: dp[i][j] = j elif j == 0: dp[i][j] = i elif reference[i - 1] == candidate[j - 1]: dp[i][j] = dp[i - 1][j - 1] else: dp[i][j] = 1 + min(dp[i][j - 1], # Insert dp[i - 1][j], # Remove dp[i - 1][j - 1]) # Replace return dp[m][n] def generate_paraphrase(question): para_tokenizer, para_model = init_model() res = paraphrase(question, para_tokenizer, para_model) return res question = "Following the declaration of the State of Israel in 1948, neighboring Arab states invaded. The war ended with Israel controlling a significant portion of the territory. Many Palestinians became refugees." import re from nltk.corpus import stopwords def find_common_subsequences(sentence, str_list): stop_words = set(stopwords.words('english')) sentence = sentence.lower() str_list = [s.lower() for s in str_list] def is_present(lcs, str_list): for string in str_list: if lcs not in string: return False return True def remove_stop_words_and_special_chars(sentence): sentence = re.sub(r'[^\w\s]', '', sentence) words = sentence.split() filtered_words = [word for word in words if word.lower() not in stop_words] return " ".join(filtered_words) sentence = remove_stop_words_and_special_chars(sentence) str_list = [remove_stop_words_and_special_chars(s) for s in str_list] words = sentence.split(" ") common_grams = [] added_phrases = set() def is_covered(subseq, added_phrases): for phrase in added_phrases: if subseq in phrase: return True return False for i in range(len(words) - 4): penta = " ".join(words[i:i+5]) if is_present(penta, str_list): common_grams.append(penta) added_phrases.add(penta) for i in range(len(words) - 3): quad = " ".join(words[i:i+4]) if is_present(quad, str_list) and not is_covered(quad, added_phrases): common_grams.append(quad) added_phrases.add(quad) for i in range(len(words) - 2): tri = " ".join(words[i:i+3]) if is_present(tri, str_list) and not is_covered(tri, added_phrases): common_grams.append(tri) added_phrases.add(tri) for i in range(len(words) - 1): bi = " ".join(words[i:i+2]) if is_present(bi, str_list) and not is_covered(bi, added_phrases): common_grams.append(bi) added_phrases.add(bi) for i in range(len(words)): uni = words[i] if is_present(uni, str_list) and not is_covered(uni, added_phrases): common_grams.append(uni) added_phrases.add(uni) return common_grams def llm_output(prompt): return prompt, prompt def highlight_phrases_with_colors(sentences, phrases): color_map = {} color_index = 0 highlighted_html = [] idx = 1 for sentence in sentences: sentence_with_idx = f"{idx}. {sentence}" idx += 1 highlighted_sentence = sentence_with_idx phrase_count = 0 words = re.findall(r'\b\w+\b', sentence) word_index = 1 for phrase in phrases: if phrase not in color_map: color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)' color_index += 1 escaped_phrase = re.escape(phrase) pattern = rf'\b{escaped_phrase}\b' highlighted_sentence, num_replacements = re.subn( pattern, lambda m, count=phrase_count, color=color_map[phrase], index=word_index: ( f'' f'{index}' f'{m.group(0)}' f'' ), highlighted_sentence, flags=re.IGNORECASE ) if num_replacements > 0: phrase_count += 1 word_index += 1 highlighted_html.append(highlighted_sentence) final_html = "

".join(highlighted_html) return f'''

Paraphrased And Highlighted Text

{final_html}
''' import re def highlight_phrases_with_colors_single_sentence(sentence, phrases): color_map = {} color_index = 0 highlighted_sentence = sentence phrase_count = 0 words = re.findall(r'\b\w+\b', sentence) word_index = 1 for phrase in phrases: if phrase not in color_map: color_map[phrase] = f'hsl({color_index * 60 % 360}, 70%, 80%)' color_index += 1 escaped_phrase = re.escape(phrase) pattern = rf'\b{escaped_phrase}\b' highlighted_sentence, num_replacements = re.subn( pattern, lambda m, count=phrase_count, color=color_map[phrase], index=word_index: ( f'' f'{index}' f'{m.group(0)}' f'' ), highlighted_sentence, flags=re.IGNORECASE ) if num_replacements > 0: phrase_count += 1 word_index += 1 final_html = highlighted_sentence return f'''

Selected Sentence

{final_html}
''' # Masking Model def mask_non_stopword(sentence): stop_words = set(stopwords.words('english')) words = sentence.split() non_stop_words = [word for word in words if word.lower() not in stop_words] if not non_stop_words: return sentence word_to_mask = random.choice(non_stop_words) masked_sentence = sentence.replace(word_to_mask, '[MASK]', 1) return masked_sentence # Load tokenizer and model for masked language model tokenizer = AutoTokenizer.from_pretrained("bert-large-cased-whole-word-masking") model = AutoModelForMaskedLM.from_pretrained("bert-large-cased-whole-word-masking") fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer) def mask(sentence): predictions = fill_mask(sentence) masked_sentences = [predictions[i]['sequence'] for i in range(len(predictions))] return masked_sentences #plotly tree import plotly.graph_objs as go import textwrap import re from collections import defaultdict def generate_plot(original_sentence): paraphrased_sentences = generate_paraphrase(original_sentence) first_paraphrased_sentence = paraphrased_sentences[0] masked_sentence = mask_non_stopword(first_paraphrased_sentence) masked_versions = mask(masked_sentence) nodes = [] nodes.append(original_sentence) nodes.extend(paraphrased_sentences) nodes.extend(masked_versions) nodes[0] += ' L0' para_len = len(paraphrased_sentences) for i in range(1, para_len+1): nodes[i] += ' L1' for i in range(para_len+1, len(nodes)): nodes[i] += ' L2' cleaned_nodes = [re.sub(r'\sL[0-9]$', '', node) for node in nodes] wrapped_nodes = ['
'.join(textwrap.wrap(node, width=30)) for node in cleaned_nodes] def get_levels_and_edges(nodes): levels = {} edges = [] for i, node in enumerate(nodes): level = int(node.split()[-1][1]) levels[i] = level # Add edges from L0 to all L1 nodes root_node = next(i for i, level in levels.items() if level == 0) for i, level in levels.items(): if level == 1: edges.append((root_node, i)) # Identify the first L1 node first_l1_node = next(i for i, level in levels.items() if level == 1) # Add edges from the first L1 node to all L2 nodes for i, level in levels.items(): if level == 2: edges.append((first_l1_node, i)) return levels, edges # Get levels and dynamic edges levels, edges = get_levels_and_edges(nodes) max_level = max(levels.values()) # Calculate positions positions = {} level_widths = defaultdict(int) for node, level in levels.items(): level_widths[level] += 1 x_offsets = {level: - (width - 1) / 2 for level, width in level_widths.items()} y_gap = 4 for node, level in levels.items(): positions[node] = (x_offsets[level], -level * y_gap) x_offsets[level] += 1 # Create figure fig = go.Figure() # Add nodes to the figure for i, node in enumerate(wrapped_nodes): x, y = positions[i] fig.add_trace(go.Scatter( x=[x], y=[y], mode='markers', marker=dict(size=10, color='blue'), hoverinfo='none' )) fig.add_annotation( x=x, y=y, text=node, showarrow=False, yshift=20, # Adjust the y-shift value to avoid overlap align="center", font=dict(size=10), bordercolor='black', borderwidth=1, borderpad=4, bgcolor='white', width=200 ) # Add edges to the figure for edge in edges: x0, y0 = positions[edge[0]] x1, y1 = positions[edge[1]] fig.add_trace(go.Scatter( x=[x0, x1], y=[y0, y1], mode='lines', line=dict(color='black', width=2) )) fig.update_layout( showlegend=False, margin=dict(t=50, b=50, l=50, r=50), xaxis=dict(showgrid=False, zeroline=False, showticklabels=False), yaxis=dict(showgrid=False, zeroline=False, showticklabels=False), width=1470, height=800 # Increase height to provide more space ) return masked_sentence, masked_versions, fig # Function for the Gradio interface def model(prompt): generated, sentence = llm_output(prompt) res = generate_paraphrase(sentence) common_subs = longest_common_subss(sentence, res) common_grams = find_common_subsequences(sentence, res) for i in range(len(common_subs)): common_subs[i]["Paraphrased Sentence"] = res[i] generated_highlighted = highlight_phrases_with_colors_single_sentence(generated, common_grams) result = highlight_phrases_with_colors(res, common_grams) masked_sentence, masked_versions, tree = generate_plot(sentence) return generated, generated_highlighted, result, masked_sentence, masked_versions, tree with gr.Blocks(theme = gr.themes.Monochrome()) as demo: gr.Markdown("# Paraphrases the Text and Highlights the Non-melting Points") with gr.Row(): user_input = gr.Textbox(label="User Prompt") with gr.Row(): submit_button = gr.Button("Submit") clear_button = gr.Button("Clear") with gr.Row(): ai_output = gr.Textbox(label="AI-generated Text (Llama3)") with gr.Row(): selected_sentence = gr.HTML() with gr.Row(): html_output = gr.HTML() with gr.Row(): masked_sentence = gr.Textbox(label="Masked Sentence") with gr.Row(): masked_versions = gr.Textbox(label="Sentence Generated by Masking Model") with gr.Row(): tree = gr.Plot() submit_button.click(model, inputs=user_input, outputs=[ai_output, selected_sentence, html_output, masked_sentence, masked_versions, tree]) clear_button.click(lambda: "", inputs=None, outputs=user_input) clear_button.click(lambda: "", inputs=None, outputs=[ai_output, selected_sentence, html_output, masked_sentence, masked_versions, tree]) # Launch the demo demo.launch(share=True)