jhansi1 commited on
Commit
009fbcd
·
verified ·
1 Parent(s): eb223fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -12
app.py CHANGED
@@ -3,24 +3,17 @@ import streamlit as st
3
  from transformers import pipeline
4
  from datasets import load_dataset
5
  from huggingface_hub import hf_hub_download
6
- import subprocess
7
- import os
8
-
9
- # Clone the dataset repository if not already cloned
10
- repo_url = "https://huggingface.co/datasets/BEE-spoke-data/survivorslib-law-books"
11
- repo_dir = "./survivorslib-law-books"
12
 
13
- if not os.path.exists(repo_dir):
14
- subprocess.run(["git", "clone", repo_url], check=True)
15
 
16
- # Load the dataset from the cloned repository
17
- dataset_path = os.path.join(repo_dir, "train.parquet")
18
- ds = load_dataset("parquet", data_files=dataset_path)
19
 
20
  # Initialize text-generation pipeline with the model
21
  model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
22
  pipe = pipeline("text-generation", model=model_name)
23
 
 
 
 
24
  # Gradio Interface setup
25
  def respond(
26
  message,
@@ -93,4 +86,4 @@ if __name__ == "__main__":
93
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
94
  ],
95
  )
96
- demo.launch()
 
3
  from transformers import pipeline
4
  from datasets import load_dataset
5
  from huggingface_hub import hf_hub_download
6
+ from datasets import load_dataset
 
 
 
 
 
7
 
 
 
8
 
 
 
 
9
 
10
  # Initialize text-generation pipeline with the model
11
  model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
12
  pipe = pipeline("text-generation", model=model_name)
13
 
14
+ # Load the dataset from the cloned local direc/tory
15
+ ds = load_dataset("./canadian-legal-data", split="train",verify=False)
16
+
17
  # Gradio Interface setup
18
  def respond(
19
  message,
 
86
  gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
87
  ],
88
  )
89
+ demo.launch()