Update app.py
Browse files
app.py
CHANGED
@@ -3,24 +3,17 @@ import streamlit as st
|
|
3 |
from transformers import pipeline
|
4 |
from datasets import load_dataset
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
-
import
|
7 |
-
import os
|
8 |
-
|
9 |
-
# Clone the dataset repository if not already cloned
|
10 |
-
repo_url = "https://huggingface.co/datasets/BEE-spoke-data/survivorslib-law-books"
|
11 |
-
repo_dir = "./survivorslib-law-books"
|
12 |
|
13 |
-
if not os.path.exists(repo_dir):
|
14 |
-
subprocess.run(["git", "clone", repo_url], check=True)
|
15 |
|
16 |
-
# Load the dataset from the cloned repository
|
17 |
-
dataset_path = os.path.join(repo_dir, "train.parquet")
|
18 |
-
ds = load_dataset("parquet", data_files=dataset_path)
|
19 |
|
20 |
# Initialize text-generation pipeline with the model
|
21 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
22 |
pipe = pipeline("text-generation", model=model_name)
|
23 |
|
|
|
|
|
|
|
24 |
# Gradio Interface setup
|
25 |
def respond(
|
26 |
message,
|
@@ -93,4 +86,4 @@ if __name__ == "__main__":
|
|
93 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
94 |
],
|
95 |
)
|
96 |
-
demo.launch()
|
|
|
3 |
from transformers import pipeline
|
4 |
from datasets import load_dataset
|
5 |
from huggingface_hub import hf_hub_download
|
6 |
+
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
8 |
|
|
|
|
|
|
|
9 |
|
10 |
# Initialize text-generation pipeline with the model
|
11 |
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
12 |
pipe = pipeline("text-generation", model=model_name)
|
13 |
|
14 |
+
# Load the dataset from the cloned local direc/tory
|
15 |
+
ds = load_dataset("./canadian-legal-data", split="train",verify=False)
|
16 |
+
|
17 |
# Gradio Interface setup
|
18 |
def respond(
|
19 |
message,
|
|
|
86 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
87 |
],
|
88 |
)
|
89 |
+
demo.launch()
|