Update app.py
Browse files
app.py
CHANGED
@@ -1,58 +1,87 @@
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from
|
4 |
-
|
5 |
-
#
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
else:
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
import streamlit as st
|
5 |
+
from transformers import pipeline
|
6 |
+
from datasets import load_dataset
|
7 |
+
|
8 |
+
# Initialize text-generation pipeline with the model
|
9 |
+
model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
10 |
+
pipe = pipeline("text-generation", model=model_name)
|
11 |
+
|
12 |
+
# Load the dataset from the cloned local directory
|
13 |
+
ds = load_dataset("./canadian-legal-data", split="train")
|
14 |
+
|
15 |
+
# Gradio Interface setup
|
16 |
+
def respond(
|
17 |
+
message,
|
18 |
+
history: list[tuple[str, str]],
|
19 |
+
system_message,
|
20 |
+
max_tokens,
|
21 |
+
temperature,
|
22 |
+
top_p,
|
23 |
+
):
|
24 |
+
messages = [{"role": "system", "content": system_message}]
|
25 |
+
|
26 |
+
for val in history:
|
27 |
+
if val[0]:
|
28 |
+
messages.append({"role": "user", "content": val[0]})
|
29 |
+
if val[1]:
|
30 |
+
messages.append({"role": "assistant", "content": val[1]})
|
31 |
+
|
32 |
+
messages.append({"role": "user", "content": message})
|
33 |
+
|
34 |
+
response = ""
|
35 |
+
|
36 |
+
for message in pipe(
|
37 |
+
prompt=message,
|
38 |
+
max_length=max_tokens,
|
39 |
+
do_sample=True,
|
40 |
+
temperature=temperature,
|
41 |
+
top_p=top_p,
|
42 |
+
):
|
43 |
+
token = message["generated_text"]
|
44 |
+
response += token
|
45 |
+
yield response
|
46 |
+
|
47 |
+
# Streamlit Interface setup
|
48 |
+
def streamlit_interface():
|
49 |
+
st.title("Canadian Legal Text Generator")
|
50 |
+
st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.")
|
51 |
+
|
52 |
+
# Show dataset sample
|
53 |
+
st.subheader("Sample Data from Canadian Legal Dataset:")
|
54 |
+
st.write(ds[:5]) # Display the first 5 rows of the dataset
|
55 |
+
|
56 |
+
# Prompt input
|
57 |
+
prompt = st.text_area("Enter your prompt:", placeholder="Type something...")
|
58 |
+
|
59 |
+
if st.button("Generate Response"):
|
60 |
+
if prompt:
|
61 |
+
# Generate text based on the prompt
|
62 |
+
with st.spinner("Generating response..."):
|
63 |
+
generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"]
|
64 |
+
st.write("**Generated Text:**")
|
65 |
+
st.write(generated_text)
|
66 |
+
else:
|
67 |
+
st.write("Please enter a prompt to generate a response.")
|
68 |
+
|
69 |
+
|
70 |
+
# Running Gradio and Streamlit interfaces
|
71 |
+
if __name__ == "__main__":
|
72 |
+
st.sidebar.title("Choose an Interface")
|
73 |
+
interface = st.sidebar.radio("Select", ("Streamlit", "Gradio"))
|
74 |
+
|
75 |
+
if interface == "Streamlit":
|
76 |
+
streamlit_interface()
|
77 |
else:
|
78 |
+
demo = gr.ChatInterface(
|
79 |
+
respond,
|
80 |
+
additional_inputs=[
|
81 |
+
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
82 |
+
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
83 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
84 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
85 |
+
],
|
86 |
+
)
|
87 |
+
demo.launch()
|