# app.py import gradio as gr import streamlit as st from transformers import pipeline from datasets import load_dataset # Initialize text-generation pipeline with the model model_name = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF" pipe = pipeline("text-generation", model=model_name) # Load the dataset from the cloned local directory ds = load_dataset("./canadian-legal-data", split="train") # Gradio Interface setup def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in pipe( prompt=message, max_length=max_tokens, do_sample=True, temperature=temperature, top_p=top_p, ): token = message["generated_text"] response += token yield response # Streamlit Interface setup def streamlit_interface(): st.title("Canadian Legal Text Generator") st.write("Enter a prompt related to Canadian legal data and generate text using Llama-3.1.") # Show dataset sample st.subheader("Sample Data from Canadian Legal Dataset:") st.write(ds[:5]) # Display the first 5 rows of the dataset # Prompt input prompt = st.text_area("Enter your prompt:", placeholder="Type something...") if st.button("Generate Response"): if prompt: # Generate text based on the prompt with st.spinner("Generating response..."): generated_text = pipe(prompt, max_length=100, do_sample=True, temperature=0.7)[0]["generated_text"] st.write("**Generated Text:**") st.write(generated_text) else: st.write("Please enter a prompt to generate a response.") # Running Gradio and Streamlit interfaces if __name__ == "__main__": st.sidebar.title("Choose an Interface") interface = st.sidebar.radio("Select", ("Streamlit", "Gradio")) if interface == "Streamlit": streamlit_interface() else: demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) demo.launch()