Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import plotly.graph_objects as go | |
from datasets import load_dataset | |
dataset = load_dataset('text', data_files={'train': ['NPI_2023_01_17-05.10.57.PM.csv'], 'test': 'NPI_2023_01_17-05.10.57.PM.csv'}) | |
#1.6GB NPI file with MH therapy taxonomy provider codes (NUCC based) with human friendly replacement labels (e.g. Counselor rather than code) | |
datasetNYC = load_dataset("gradio/NYC-Airbnb-Open-Data", split="train") | |
df = datasetNYC.to_pandas() | |
def MatchText(pddf, name): | |
pd.set_option("display.max_rows", None) | |
data = pddf | |
swith=data.loc[data['text'].str.contains(name, case=False, na=False)] | |
return swith | |
def getDatasetFind(findString): | |
#finder = dataset.filter(lambda example: example['text'].find(findString)) | |
finder = dataset['train'].filter(lambda example: example['text'].find(findString)) | |
finder = finder = finder.to_pandas() | |
g1=MatchText(finder, findString) | |
return g1 | |
def filter_map(min_price, max_price, boroughs): | |
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)] | |
names = filtered_df["name"].tolist() | |
prices = filtered_df["price"].tolist() | |
text_list = [(names[i], prices[i]) for i in range(0, len(names))] | |
fig = go.Figure(go.Scattermapbox( | |
customdata=text_list, | |
lat=filtered_df['latitude'].tolist(), | |
lon=filtered_df['longitude'].tolist(), | |
mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=6 | |
), | |
hoverinfo="text", | |
hovertemplate='Name: %{customdata[0]}Price: $%{customdata[1]}' | |
)) | |
fig.update_layout( | |
mapbox_style="open-street-map", | |
hovermode='closest', | |
mapbox=dict( | |
bearing=0, | |
center=go.layout.mapbox.Center( | |
lat=40.67, | |
lon=-73.90 | |
), | |
pitch=0, | |
zoom=9 | |
), | |
) | |
return fig | |
def centerMap(min_price, max_price, boroughs): | |
filtered_df = df[(df['neighbourhood_group'].isin(boroughs)) & (df['price'] > min_price) & (df['price'] < max_price)] | |
names = filtered_df["name"].tolist() | |
prices = filtered_df["price"].tolist() | |
text_list = [(names[i], prices[i]) for i in range(0, len(names))] | |
latitude = 44.9382 | |
longitude = -93.6561 | |
fig = go.Figure(go.Scattermapbox( | |
customdata=text_list, | |
lat=filtered_df['latitude'].tolist(), | |
lon=filtered_df['longitude'].tolist(), mode='markers', | |
marker=go.scattermapbox.Marker( | |
size=6 | |
), | |
hoverinfo="text", | |
#hovertemplate='Lat: %{lat} Long:%{lng} City: %{cityNm}' | |
)) | |
fig.update_layout( | |
mapbox_style="open-street-map", | |
hovermode='closest', | |
mapbox=dict( | |
bearing=0, | |
center=go.layout.mapbox.Center( | |
lat=latitude, | |
lon=longitude | |
), | |
pitch=0, | |
zoom=9 | |
), | |
) | |
return fig | |
with gr.Blocks() as demo: | |
with gr.Column(): | |
# Price/Boroughs/Map/Filter for AirBnB | |
with gr.Row(): | |
min_price = gr.Number(value=250, label="Minimum Price") | |
max_price = gr.Number(value=1000, label="Maximum Price") | |
boroughs = gr.CheckboxGroup(choices=["Queens", "Brooklyn", "Manhattan", "Bronx", "Staten Island"], value=["Queens", "Brooklyn"], label="Select Boroughs:") | |
btn = gr.Button(value="Update Filter") | |
map = gr.Plot().style() | |
# Mental Health Provider Finder | |
with gr.Row(): | |
df20 = gr.Textbox(lines=4, default="", label="Find Mental Health Provider e.g. City/State/Name/License:") | |
btn2 = gr.Button(value="Find") | |
with gr.Row(): | |
df4 = gr.Dataframe(wrap=True, max_rows=10000, overflow_row_behaviour= "paginate") | |
# City Map | |
with gr.Row(): | |
df2 = gr.Textbox(lines=1, default="Mound", label="Find City:") | |
latitudeUI = gr.Textbox(lines=1, default="44.9382", label="Latitude:") | |
longitudeUI = gr.Textbox(lines=1, default="-93.6561", label="Longitude:") | |
btn3 = gr.Button(value="Lat-Long") | |
demo.load(filter_map, [min_price, max_price, boroughs], map) | |
btn.click(filter_map, [min_price, max_price, boroughs], map) | |
btn2.click(getDatasetFind,df20,df4 ) | |
# Lookup on US once you have city to get lat/long | |
# US 55364 Mound Minnesota MN Hennepin 053 44.9382 -93.6561 4 | |
#latitude = 44.9382 | |
#longitude = -93.6561 | |
#btn3.click(centerMap, map) | |
btn3.click(centerMap, [min_price, max_price, boroughs], map) | |
demo.launch() |