File size: 30,245 Bytes
8b2f0bf 46fa2af 4daf2ff 219ecf9 4daf2ff 46fa2af 8b2f0bf 46fa2af de78657 4daf2ff 7f7cda2 4daf2ff a0a4522 4daf2ff 46fa2af 4daf2ff b7be5e9 4daf2ff 46fa2af 4daf2ff 6ecdb23 46fa2af 6ecdb23 46fa2af 4daf2ff 6ecdb23 4daf2ff 46fa2af 4daf2ff 6ecdb23 4daf2ff 46fa2af 4daf2ff 6ecdb23 4daf2ff 46fa2af 4daf2ff 6ecdb23 4daf2ff 46fa2af 4daf2ff 6ecdb23 4daf2ff 3b34b71 46fa2af 3b34b71 4daf2ff 535b5e7 4daf2ff 0e976e4 4daf2ff 46fa2af 6a40fe0 6cc808c 6a40fe0 cc3d06b 46fa2af 4daf2ff cc3d06b 4daf2ff 4cbf87a 4daf2ff f3bd536 4daf2ff e6d5b51 4daf2ff e6d5b51 4daf2ff e6d5b51 353443c e6d5b51 353443c 4daf2ff e679e08 2d217e7 4daf2ff e679e08 4daf2ff 7f7cda2 6cc808c aa337d6 6a40fe0 de78657 7f7cda2 b7be5e9 aa337d6 4daf2ff 2837c6e aa337d6 2837c6e 4daf2ff 61ca76c b7be5e9 2837c6e 4daf2ff 284f5ff 4daf2ff 2837c6e 4daf2ff 2837c6e 4daf2ff 353443c 4daf2ff b7be5e9 fee04a0 7f7cda2 b7be5e9 7f7cda2 4daf2ff 7f08e0c 46fa2af 7f08e0c 46fa2af 4daf2ff 0e976e4 4daf2ff 46fa2af 4daf2ff 3b34b71 4daf2ff 29877df 4daf2ff 8b2f0bf 4daf2ff 8b2f0bf 4daf2ff 8b2f0bf 4daf2ff 8b2f0bf 4daf2ff aa337d6 4daf2ff 8db15a4 4daf2ff 8b2f0bf 4cfbecc 8db15a4 4daf2ff aa337d6 4daf2ff aa337d6 4daf2ff 46fa2af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
import logging
import os
import cv2
import time
import copy
import dill
import torch
from ultralytics import YOLO
import safetensors.torch
import gradio as gr
from gradio_i18n import Translate, gettext as _
from ultralytics.utils import LOGGER as ultralytics_logger
from enum import Enum
from typing import Union, List, Dict, Tuple
from modules.utils.paths import *
from modules.utils.image_helper import *
from modules.utils.video_helper import *
from modules.live_portrait.model_downloader import *
from modules.live_portrait.live_portrait_wrapper import LivePortraitWrapper
from modules.utils.camera import get_rotation_matrix
from modules.utils.helper import load_yaml
from modules.utils.constants import *
from modules.config.inference_config import InferenceConfig
from modules.live_portrait.spade_generator import SPADEDecoder
from modules.live_portrait.warping_network import WarpingNetwork
from modules.live_portrait.motion_extractor import MotionExtractor
from modules.live_portrait.appearance_feature_extractor import AppearanceFeatureExtractor
from modules.live_portrait.stitching_retargeting_network import StitchingRetargetingNetwork
class LivePortraitInferencer:
def __init__(self,
model_dir: str = MODELS_DIR,
output_dir: str = OUTPUTS_DIR):
self.model_dir = model_dir
self.output_dir = output_dir
relative_dirs = [
os.path.join(self.model_dir, "animal"),
os.path.join(self.output_dir, "videos"),
os.path.join(self.output_dir, "temp"),
os.path.join(self.output_dir, "temp", "video_frames"),
os.path.join(self.output_dir, "temp", "video_frames", "out"),
]
for dir_path in relative_dirs:
os.makedirs(dir_path, exist_ok=True)
self.model_config = load_yaml(MODEL_CONFIG)["model_params"]
self.appearance_feature_extractor = None
self.motion_extractor = None
self.warping_module = None
self.spade_generator = None
self.stitching_retargeting_module = None
self.pipeline = None
self.detect_model = None
self.device = self.get_device()
self.model_type = ModelType.HUMAN.value
self.mask_img = None
self.temp_img_idx = 0
self.src_image = None
self.src_image_list = None
self.sample_image = None
self.driving_images = None
self.driving_values = None
self.crop_factor = None
self.psi = None
self.psi_list = None
self.d_info = None
def load_models(self,
model_type: str = ModelType.HUMAN.value,
progress=gr.Progress()):
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type not in [mode.value for mode in ModelType]:
model_type = ModelType.HUMAN.value
self.model_type = model_type
if model_type == ModelType.ANIMAL.value:
model_dir = os.path.join(self.model_dir, "animal")
else:
model_dir = self.model_dir
self.download_if_no_models(
model_type=model_type
)
total_models_num = 5
progress(0/total_models_num, desc="Loading Appearance Feature Extractor model...")
appearance_feat_config = self.model_config["appearance_feature_extractor_params"]
self.appearance_feature_extractor = AppearanceFeatureExtractor(**appearance_feat_config).to(self.device)
self.appearance_feature_extractor = self.load_safe_tensor(
self.appearance_feature_extractor,
os.path.join(model_dir, "appearance_feature_extractor.safetensors")
)
progress(1/total_models_num, desc="Loading Motion Extractor model...")
motion_ext_config = self.model_config["motion_extractor_params"]
self.motion_extractor = MotionExtractor(**motion_ext_config).to(self.device)
self.motion_extractor = self.load_safe_tensor(
self.motion_extractor,
os.path.join(model_dir, "motion_extractor.safetensors")
)
progress(2/total_models_num, desc="Loading Warping Module model...")
warping_module_config = self.model_config["warping_module_params"]
self.warping_module = WarpingNetwork(**warping_module_config).to(self.device)
self.warping_module = self.load_safe_tensor(
self.warping_module,
os.path.join(model_dir, "warping_module.safetensors")
)
progress(3/total_models_num, desc="Loading Spade generator model...")
spaded_decoder_config = self.model_config["spade_generator_params"]
self.spade_generator = SPADEDecoder(**spaded_decoder_config).to(self.device)
self.spade_generator = self.load_safe_tensor(
self.spade_generator,
os.path.join(model_dir, "spade_generator.safetensors")
)
progress(4/total_models_num, desc="Loading Stitcher model...")
stitcher_config = self.model_config["stitching_retargeting_module_params"]
self.stitching_retargeting_module = StitchingRetargetingNetwork(**stitcher_config.get('stitching')).to(self.device)
self.stitching_retargeting_module = self.load_safe_tensor(
self.stitching_retargeting_module,
os.path.join(model_dir, "stitching_retargeting_module.safetensors"),
True
)
self.stitching_retargeting_module = {"stitching": self.stitching_retargeting_module}
if self.pipeline is None or model_type != self.model_type:
self.pipeline = LivePortraitWrapper(
InferenceConfig(),
self.appearance_feature_extractor,
self.motion_extractor,
self.warping_module,
self.spade_generator,
self.stitching_retargeting_module
)
det_model_name = "yolo_v5s_animal_det" if model_type == ModelType.ANIMAL else "face_yolov8n"
self.detect_model = YOLO(MODEL_PATHS[det_model_name]).to(self.device)
def edit_expression(self,
model_type: str = ModelType.HUMAN.value,
rotate_pitch: float = 0,
rotate_yaw: float = 0,
rotate_roll: float = 0,
blink: float = 0,
eyebrow: float = 0,
wink: float = 0,
pupil_x: float = 0,
pupil_y: float = 0,
aaa: float = 0,
eee: float = 0,
woo: float = 0,
smile: float = 0,
src_ratio: float = 1,
sample_ratio: float = 1,
sample_parts: str = SamplePart.ALL.value,
crop_factor: float = 2.3,
src_image: Optional[str] = None,
sample_image: Optional[str] = None,) -> None:
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type not in [mode.value for mode in ModelType]:
model_type = ModelType.HUMAN
if self.pipeline is None or model_type != self.model_type:
self.load_models(
model_type=model_type
)
try:
rotate_yaw = -rotate_yaw
if src_image is not None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.psi = self.prepare_source(src_image, crop_factor)
self.src_image = src_image
else:
return None
psi = self.psi
s_info = psi.x_s_info
#delta_new = copy.deepcopy()
s_exp = s_info['exp'] * src_ratio
s_exp[0, 5] = s_info['exp'][0, 5]
s_exp += s_info['kp']
es = ExpressionSet()
if isinstance(sample_image, np.ndarray) and sample_image:
if id(self.sample_image) != id(sample_image):
self.sample_image = sample_image
d_image_np = (sample_image * 255).byte().numpy()
d_face = self.crop_face(d_image_np[0], 1.7)
i_d = self.prepare_src_image(d_face)
self.d_info = self.pipeline.get_kp_info(i_d)
self.d_info['exp'][0, 5, 0] = 0
self.d_info['exp'][0, 5, 1] = 0
# "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
if sample_parts == SamplePart.ONLY_EXPRESSION.value or sample_parts == SamplePart.ONLY_EXPRESSION.ALL.value:
es.e += self.d_info['exp'] * sample_ratio
if sample_parts == SamplePart.ONLY_ROTATION.value or sample_parts == SamplePart.ONLY_ROTATION.ALL.value:
rotate_pitch += self.d_info['pitch'] * sample_ratio
rotate_yaw += self.d_info['yaw'] * sample_ratio
rotate_roll += self.d_info['roll'] * sample_ratio
elif sample_parts == SamplePart.ONLY_MOUTH.value:
self.retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
elif sample_parts == SamplePart.ONLY_EYES.value:
self.retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))
es.r = self.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll)
new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
s_info['roll'] + es.r[2])
x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']
x_d_new = self.pipeline.stitching(psi.x_s_user, x_d_new)
crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
crop_out = self.pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)
temp_out_img_path, out_img_path = get_auto_incremental_file_path(TEMP_DIR, "png"), get_auto_incremental_file_path(OUTPUTS_DIR, "png")
save_image(numpy_array=crop_out, output_path=temp_out_img_path)
save_image(numpy_array=out, output_path=out_img_path)
return out
except Exception as e:
raise
def create_video(self,
model_type: str = ModelType.HUMAN.value,
retargeting_eyes: float = 1,
retargeting_mouth: float = 1,
crop_factor: float = 2.3,
src_image: Optional[str] = None,
driving_vid_path: Optional[str] = None,
progress: gr.Progress = gr.Progress()
):
if self.pipeline is None or model_type != self.model_type:
self.load_models(
model_type=model_type
)
vid_info = get_video_info(vid_input=driving_vid_path)
if src_image is not None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.src_image = src_image
self.psi_list = [self.prepare_source(src_image, crop_factor)]
progress(0, desc="Extracting frames from the video..")
driving_images, vid_sound = extract_frames(driving_vid_path, os.path.join(self.output_dir, "temp", "video_frames")), extract_sound(driving_vid_path)
driving_length = 0
if driving_images is not None:
if id(driving_images) != id(self.driving_images):
self.driving_images = driving_images
self.driving_values = self.prepare_driving_video(driving_images)
driving_length = len(self.driving_values)
total_length = len(driving_images)
c_i_es = ExpressionSet()
c_o_es = ExpressionSet()
d_0_es = None
psi = None
for i in range(total_length):
if i == 0:
psi = self.psi_list[i]
s_info = psi.x_s_info
s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))
new_es = ExpressionSet(es=s_es)
if i < driving_length:
d_i_info = self.driving_values[i]
d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']]) # .float().to(device="cuda:0")
if d_0_es is None:
d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))
self.retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
self.retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))
new_es.e += d_i_info['exp'] - d_0_es.e
new_es.r += d_i_r - d_0_es.r
new_es.t += d_i_info['t'] - d_0_es.t
r_new = get_rotation_matrix(
s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
d_new = new_es.s * (new_es.e @ r_new) + new_es.t
d_new = self.pipeline.stitching(psi.x_s_user, d_new)
crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
crop_out = self.pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
np.uint8)
out_frame_path = get_auto_incremental_file_path(os.path.join(self.output_dir, "temp", "video_frames", "out"), "png")
save_image(out, out_frame_path)
progress(i/total_length, desc=f"Generating frames {i}/{total_length} ..")
video_path = create_video_from_frames(TEMP_VIDEO_OUT_FRAMES_DIR, frame_rate=vid_info.frame_rate, output_dir=os.path.join(self.output_dir, "videos"))
return video_path
def download_if_no_models(self,
model_type: str = ModelType.HUMAN.value,
progress=gr.Progress(), ):
progress(0, desc="Downloading models...")
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type == ModelType.ANIMAL.value:
models_urls_dic = MODELS_ANIMAL_URL
model_dir = os.path.join(self.model_dir, "animal")
else:
models_urls_dic = MODELS_URL
model_dir = self.model_dir
for model_name, model_url in models_urls_dic.items():
if model_url.endswith(".pt"):
model_name += ".pt"
elif model_url.endswith(".n2x"):
model_name += ".n2x"
else:
model_name += ".safetensors"
model_path = os.path.join(model_dir, model_name)
if not os.path.exists(model_path):
download_model(model_path, model_url)
@staticmethod
def load_safe_tensor(model, file_path, is_stitcher=False):
def filter_stitcher(checkpoint, prefix):
filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
key.startswith(prefix)}
return filtered_checkpoint
if is_stitcher:
model.load_state_dict(filter_stitcher(safetensors.torch.load_file(file_path), 'retarget_shoulder'))
else:
model.load_state_dict(safetensors.torch.load_file(file_path))
model.eval()
return model
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def get_temp_img_name(self):
self.temp_img_idx += 1
return "expression_edit_preview" + str(self.temp_img_idx) + ".png"
@staticmethod
def parsing_command(command, motoin_link):
command.replace(' ', '')
lines = command.split('\n')
cmd_list = []
total_length = 0
i = 0
for line in lines:
i += 1
if not line:
continue
try:
cmds = line.split('=')
idx = int(cmds[0])
if idx == 0: es = ExpressionSet()
else: es = ExpressionSet(es = motoin_link[idx])
cmds = cmds[1].split(':')
change = int(cmds[0])
keep = int(cmds[1])
except Exception as e:
print(f"(AdvancedLivePortrait) Command Err Line {i}: {line}, :{e}")
return None, None
total_length += change + keep
es.div(change)
cmd_list.append(Command(es, change, keep))
return cmd_list, total_length
def get_face_bboxes(self, image_rgb):
pred = self.detect_model(image_rgb, conf=0.7, device=self.device)
return pred[0].boxes.xyxy.cpu().numpy()
def detect_face(self, image_rgb, crop_factor, sort = True):
original_logger_level = ultralytics_logger.level
ultralytics_logger.setLevel(logging.CRITICAL + 1)
bboxes = self.get_face_bboxes(image_rgb)
w, h = get_rgb_size(image_rgb)
# print(f"w, h:{w, h}")
cx = w / 2
min_diff = w
best_box = None
for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
if bbox_w < 30: continue
diff = abs(cx - (x1 + bbox_w / 2))
if diff < min_diff:
best_box = [x1, y1, x2, y2]
# print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
min_diff = diff
if best_box == None:
print("Failed to detect face!!")
return [0, 0, w, h]
x1, y1, x2, y2 = best_box
#for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
crop_w = max(crop_h, crop_w)
crop_h = crop_w
kernel_x = int(x1 + bbox_w / 2)
kernel_y = int(y1 + bbox_h / 2)
new_x1 = int(kernel_x - crop_w / 2)
new_x2 = int(kernel_x + crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
new_y2 = int(kernel_y + crop_h / 2)
if not sort:
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
elif w < new_x2:
new_x1 -= (new_x2 - w)
new_x2 = w
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
elif h < new_y2:
new_y1 -= (new_y2 - h)
new_y2 = h
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
if w < new_x2 and h < new_y2:
over_x = new_x2 - w
over_y = new_y2 - h
over_min = min(over_x, over_y)
new_x2 -= over_min
new_y2 -= over_min
ultralytics_logger.setLevel(original_logger_level)
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
@staticmethod
def retargeting(delta_out, driving_exp, factor, idxes):
for idx in idxes:
delta_out[0, idx] += driving_exp[0, idx] * factor
@staticmethod
def calc_face_region(square, dsize):
region = copy.deepcopy(square)
is_changed = False
if dsize[0] < region[2]:
region[2] = dsize[0]
is_changed = True
if dsize[1] < region[3]:
region[3] = dsize[1]
is_changed = True
return region, is_changed
@staticmethod
def expand_img(rgb_img, square):
crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
cv2.INTER_LINEAR)
return new_img
def prepare_src_image(self, img):
if isinstance(img, str):
img = image_path_to_array(img)
if len(img.shape) <= 3:
img = img[np.newaxis, ...]
d, h, w, c = img.shape
img = img[0] # Select first dimension
input_shape = [256, 256]
if h != input_shape[0] or w != input_shape[1]:
if 256 < h: interpolation = cv2.INTER_AREA
else: interpolation = cv2.INTER_LINEAR
x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
else:
x = img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(self.device)
return x
def get_mask_img(self):
if self.mask_img is None:
self.mask_img = cv2.imread(MASK_TEMPLATES, cv2.IMREAD_COLOR)
return self.mask_img
def crop_face(self, img_rgb, crop_factor):
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
return face_img
def prepare_source(self, source_image, crop_factor, is_video=False, tracking=False):
# source_image_np = (source_image * 255).byte().numpy()
# img_rgb = source_image_np[0]
# print("Prepare source...")
if isinstance(source_image, str):
source_image = image_path_to_array(source_image)
if len(source_image.shape) <= 3:
source_image = source_image[np.newaxis, ...]
psi_list = []
for img_rgb in source_image:
if tracking or len(psi_list) == 0:
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
s_x = (face_region[2] - face_region[0]) / 512.
s_y = (face_region[3] - face_region[1]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
mask_ori = cv2.warpAffine(self.get_mask_img(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
mask_ori = mask_ori.astype(np.float32) / 255.
if is_changed:
s = (crop_region[2] - crop_region[0]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
i_s = self.prepare_src_image(face_img)
x_s_info = self.pipeline.get_kp_info(i_s)
f_s_user = self.pipeline.extract_feature_3d(i_s)
x_s_user = self.pipeline.transform_keypoint(x_s_info)
psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
if is_video == False:
return psi
psi_list.append(psi)
return psi_list
def prepare_driving_video(self, face_images):
# print("Prepare driving video...")
out_list = []
for f_img in face_images:
i_d = self.prepare_src_image(f_img)
d_info = self.pipeline.get_kp_info(i_d)
out_list.append(d_info)
return out_list
@staticmethod
def calc_fe(x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll):
x_d_new[0, 20, 1] += smile * -0.01
x_d_new[0, 14, 1] += smile * -0.02
x_d_new[0, 17, 1] += smile * 0.0065
x_d_new[0, 17, 2] += smile * 0.003
x_d_new[0, 13, 1] += smile * -0.00275
x_d_new[0, 16, 1] += smile * -0.00275
x_d_new[0, 3, 1] += smile * -0.0035
x_d_new[0, 7, 1] += smile * -0.0035
x_d_new[0, 19, 1] += mouth * 0.001
x_d_new[0, 19, 2] += mouth * 0.0001
x_d_new[0, 17, 1] += mouth * -0.0001
rotate_pitch -= mouth * 0.05
x_d_new[0, 20, 2] += eee * -0.001
x_d_new[0, 20, 1] += eee * -0.001
#x_d_new[0, 19, 1] += eee * 0.0006
x_d_new[0, 14, 1] += eee * -0.001
x_d_new[0, 14, 1] += woo * 0.001
x_d_new[0, 3, 1] += woo * -0.0005
x_d_new[0, 7, 1] += woo * -0.0005
x_d_new[0, 17, 2] += woo * -0.0005
x_d_new[0, 11, 1] += wink * 0.001
x_d_new[0, 13, 1] += wink * -0.0003
x_d_new[0, 17, 0] += wink * 0.0003
x_d_new[0, 17, 1] += wink * 0.0003
x_d_new[0, 3, 1] += wink * -0.0003
rotate_roll -= wink * 0.1
rotate_yaw -= wink * 0.1
if 0 < pupil_x:
x_d_new[0, 11, 0] += pupil_x * 0.0007
x_d_new[0, 15, 0] += pupil_x * 0.001
else:
x_d_new[0, 11, 0] += pupil_x * 0.001
x_d_new[0, 15, 0] += pupil_x * 0.0007
x_d_new[0, 11, 1] += pupil_y * -0.001
x_d_new[0, 15, 1] += pupil_y * -0.001
eyes -= pupil_y / 2.
x_d_new[0, 11, 1] += eyes * -0.001
x_d_new[0, 13, 1] += eyes * 0.0003
x_d_new[0, 15, 1] += eyes * -0.001
x_d_new[0, 16, 1] += eyes * 0.0003
x_d_new[0, 1, 1] += eyes * -0.00025
x_d_new[0, 2, 1] += eyes * 0.00025
if 0 < eyebrow:
x_d_new[0, 1, 1] += eyebrow * 0.001
x_d_new[0, 2, 1] += eyebrow * -0.001
else:
x_d_new[0, 1, 0] += eyebrow * -0.001
x_d_new[0, 2, 0] += eyebrow * 0.001
x_d_new[0, 1, 1] += eyebrow * 0.0003
x_d_new[0, 2, 1] += eyebrow * -0.0003
return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])
class ExpressionSet:
def __init__(self, erst=None, es=None):
if es is not None:
self.e = copy.deepcopy(es.e) # [:, :, :]
self.r = copy.deepcopy(es.r) # [:]
self.s = copy.deepcopy(es.s)
self.t = copy.deepcopy(es.t)
elif erst is not None:
self.e = erst[0]
self.r = erst[1]
self.s = erst[2]
self.t = erst[3]
else:
self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(self.get_device())
self.r = torch.Tensor([0, 0, 0])
self.s = 0
self.t = 0
def div(self, value):
self.e /= value
self.r /= value
self.s /= value
self.t /= value
def add(self, other):
self.e += other.e
self.r += other.r
self.s += other.s
self.t += other.t
def sub(self, other):
self.e -= other.e
self.r -= other.r
self.s -= other.s
self.t -= other.t
def mul(self, value):
self.e *= value
self.r *= value
self.s *= value
self.t *= value
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def logging_time(original_fn):
def wrapper_fn(*args, **kwargs):
start_time = time.time()
result = original_fn(*args, **kwargs)
end_time = time.time()
print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
return result
return wrapper_fn
def save_exp_data(file_name: str, save_exp: ExpressionSet = None):
if save_exp is None or not file_name:
return file_name
with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), "wb") as f:
dill.dump(save_exp, f)
return file_name
def load_exp_data(self, file_name, ratio):
file_list = [os.path.splitext(file)[0] for file in os.listdir(EXP_OUTPUT_DIR) if file.endswith('.exp')]
with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), 'rb') as f:
es = dill.load(f)
es.mul(ratio)
return es
def handle_exp_data(code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
if add_exp is None:
es = ExpressionSet()
else:
es = ExpressionSet(es=add_exp)
codes = [code1, code2, code3, code4, code5]
values = [value1, value2, value3, value4, value5]
for i in range(5):
idx = int(codes[i] / 10)
r = codes[i] % 10
es.e[0, idx, r] += values[i] * 0.001
return es
def print_exp_data(cut_noise, exp=None):
if exp is None:
return exp
cuted_list = []
e = exp.exp * 1000
for idx in range(21):
for r in range(3):
a = abs(e[0, idx, r])
if (cut_noise < a): cuted_list.append((a, e[0, idx, r], idx * 10 + r))
sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
print(f"sorted_list: {[[item[2], round(float(item[1]), 1)] for item in sorted_list]}")
return exp
class Command:
def __init__(self,
es: ExpressionSet,
change,
keep):
self.es = es
self.change = change
self.keep = keep
|