AdvancedLivePortrait-WebUI / modules /live_portrait /live_portrait_inferencer.py
jhj0517
Remove meaningless parts
0111784
raw
history blame
29.9 kB
import logging
import os
import cv2
import time
import copy
import dill
from ultralytics import YOLO
import safetensors.torch
import gradio as gr
from gradio_i18n import Translate, gettext as _
from ultralytics.utils import LOGGER as ultralytics_logger
from enum import Enum
from typing import Union, List, Dict, Tuple
from modules.utils.paths import *
from modules.utils.image_helper import *
from modules.live_portrait.model_downloader import *
from modules.live_portrait.live_portrait_wrapper import LivePortraitWrapper
from modules.utils.camera import get_rotation_matrix
from modules.utils.helper import load_yaml
from modules.utils.constants import *
from modules.config.inference_config import InferenceConfig
from modules.live_portrait.spade_generator import SPADEDecoder
from modules.live_portrait.warping_network import WarpingNetwork
from modules.live_portrait.motion_extractor import MotionExtractor
from modules.live_portrait.appearance_feature_extractor import AppearanceFeatureExtractor
from modules.live_portrait.stitching_retargeting_network import StitchingRetargetingNetwork
class LivePortraitInferencer:
def __init__(self,
model_dir: str = MODELS_DIR,
output_dir: str = OUTPUTS_DIR):
self.model_dir = model_dir
os.makedirs(os.path.join(self.model_dir, "animal"), exist_ok=True)
self.output_dir = output_dir
self.model_config = load_yaml(MODEL_CONFIG)["model_params"]
self.appearance_feature_extractor = None
self.motion_extractor = None
self.warping_module = None
self.spade_generator = None
self.stitching_retargeting_module = None
self.pipeline = None
self.detect_model = None
self.device = self.get_device()
self.model_type = ModelType.HUMAN.value
self.mask_img = None
self.temp_img_idx = 0
self.src_image = None
self.src_image_list = None
self.sample_image = None
self.driving_images = None
self.driving_values = None
self.crop_factor = None
self.psi = None
self.psi_list = None
self.d_info = None
def load_models(self,
model_type: str = ModelType.HUMAN.value,
progress=gr.Progress()):
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type not in [mode.value for mode in ModelType]:
model_type = ModelType.HUMAN.value
self.model_type = model_type
if model_type == ModelType.ANIMAL.value:
model_dir = os.path.join(self.model_dir, "animal")
else:
model_dir = self.model_dir
self.download_if_no_models(
model_type=model_type
)
total_models_num = 5
progress(0/total_models_num, desc="Loading Appearance Feature Extractor model...")
appearance_feat_config = self.model_config["appearance_feature_extractor_params"]
self.appearance_feature_extractor = AppearanceFeatureExtractor(**appearance_feat_config).to(self.device)
self.appearance_feature_extractor = self.load_safe_tensor(
self.appearance_feature_extractor,
os.path.join(model_dir, "appearance_feature_extractor.safetensors")
)
progress(1/total_models_num, desc="Loading Motion Extractor model...")
motion_ext_config = self.model_config["motion_extractor_params"]
self.motion_extractor = MotionExtractor(**motion_ext_config).to(self.device)
self.motion_extractor = self.load_safe_tensor(
self.motion_extractor,
os.path.join(model_dir, "motion_extractor.safetensors")
)
progress(2/total_models_num, desc="Loading Warping Module model...")
warping_module_config = self.model_config["warping_module_params"]
self.warping_module = WarpingNetwork(**warping_module_config).to(self.device)
self.warping_module = self.load_safe_tensor(
self.warping_module,
os.path.join(model_dir, "warping_module.safetensors")
)
progress(3/total_models_num, desc="Loading Spade generator model...")
spaded_decoder_config = self.model_config["spade_generator_params"]
self.spade_generator = SPADEDecoder(**spaded_decoder_config).to(self.device)
self.spade_generator = self.load_safe_tensor(
self.spade_generator,
os.path.join(model_dir, "spade_generator.safetensors")
)
progress(4/total_models_num, desc="Loading Stitcher model...")
stitcher_config = self.model_config["stitching_retargeting_module_params"]
self.stitching_retargeting_module = StitchingRetargetingNetwork(**stitcher_config.get('stitching')).to(self.device)
self.stitching_retargeting_module = self.load_safe_tensor(
self.stitching_retargeting_module,
os.path.join(model_dir, "stitching_retargeting_module.safetensors"),
True
)
self.stitching_retargeting_module = {"stitching": self.stitching_retargeting_module}
if self.pipeline is None or model_type != self.model_type:
self.pipeline = LivePortraitWrapper(
InferenceConfig(),
self.appearance_feature_extractor,
self.motion_extractor,
self.warping_module,
self.spade_generator,
self.stitching_retargeting_module
)
det_model_name = "yolo_v5s_animal_det" if model_type == ModelType.ANIMAL else "face_yolov8n"
self.detect_model = YOLO(MODEL_PATHS[det_model_name]).to(self.device)
def edit_expression(self,
model_type: str = ModelType.HUMAN.value,
rotate_pitch=0,
rotate_yaw=0,
rotate_roll=0,
blink=0,
eyebrow=0,
wink=0,
pupil_x=0,
pupil_y=0,
aaa=0,
eee=0,
woo=0,
smile=0,
src_ratio=1,
sample_ratio=1,
sample_parts="All",
crop_factor=1.5,
src_image=None,
sample_image=None,
motion_link=None,
add_exp=None):
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type not in [mode.value for mode in ModelType]:
model_type = ModelType.HUMAN
if self.pipeline is None or model_type != self.model_type:
self.load_models(
model_type=model_type
)
try:
rotate_yaw = -rotate_yaw
new_editor_link = None
if isinstance(motion_link, np.ndarray) and motion_link:
self.psi = motion_link[0]
new_editor_link = motion_link.copy()
elif src_image is not None:
if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.psi = self.prepare_source(src_image, crop_factor)
self.src_image = src_image
new_editor_link = []
new_editor_link.append(self.psi)
else:
return None
psi = self.psi
s_info = psi.x_s_info
#delta_new = copy.deepcopy()
s_exp = s_info['exp'] * src_ratio
s_exp[0, 5] = s_info['exp'][0, 5]
s_exp += s_info['kp']
es = ExpressionSet()
if isinstance(sample_image, np.ndarray) and sample_image:
if id(self.sample_image) != id(sample_image):
self.sample_image = sample_image
d_image_np = (sample_image * 255).byte().numpy()
d_face = self.crop_face(d_image_np[0], 1.7)
i_d = self.prepare_src_image(d_face)
self.d_info = self.pipeline.get_kp_info(i_d)
self.d_info['exp'][0, 5, 0] = 0
self.d_info['exp'][0, 5, 1] = 0
# "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
if sample_parts == SamplePart.ONLY_EXPRESSION.value or sample_parts == SamplePart.ONLY_EXPRESSION.ALL.value:
es.e += self.d_info['exp'] * sample_ratio
if sample_parts == SamplePart.ONLY_ROTATION.value or sample_parts == SamplePart.ONLY_ROTATION.ALL.value:
rotate_pitch += self.d_info['pitch'] * sample_ratio
rotate_yaw += self.d_info['yaw'] * sample_ratio
rotate_roll += self.d_info['roll'] * sample_ratio
elif sample_parts == SamplePart.ONLY_MOUTH.value:
self.retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
elif sample_parts == SamplePart.ONLY_EYES.value:
self.retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))
es.r = self.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll)
if isinstance(add_exp, ExpressionSet):
es.add(add_exp)
new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
s_info['roll'] + es.r[2])
x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']
x_d_new = self.pipeline.stitching(psi.x_s_user, x_d_new)
crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
crop_out = self.pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)
temp_out_img_path, out_img_path = get_auto_incremental_file_path(TEMP_DIR, "png"), get_auto_incremental_file_path(OUTPUTS_DIR, "png")
save_image(numpy_array=crop_out, output_path=temp_out_img_path)
save_image(numpy_array=out, output_path=out_img_path)
new_editor_link.append(es)
return out
except Exception as e:
raise
def create_video(self,
retargeting_eyes: bool,
retargeting_mouth: bool,
tracking_src_vid: bool,
animate_without_vid: bool,
crop_factor: float,
src_image_list: Optional[List[np.ndarray]] = None,
driving_images: Optional[List[np.ndarray]] = None,
progress: gr.Progress = gr.Progress()
):
src_length = 1
if src_image_list is not None:
src_length = len(src_image_list)
if id(src_image_list) != id(self.src_image_list) or self.crop_factor != crop_factor:
self.crop_factor = crop_factor
self.src_image_list = src_image_list
if 1 < src_length:
self.psi_list = [self.prepare_source(src, crop_factor, True, tracking_src_vid) for src in src_image_list]
else:
self.psi_list = [self.prepare_source(src, crop_factor) for src in src_image_list]
driving_length = 0
if driving_images is not None:
if id(driving_images) != id(self.driving_images):
self.driving_images = driving_images
self.driving_values = self.prepare_driving_video(driving_images)
driving_length = len(self.driving_values)
total_length = max(driving_length, src_length)
if animate_without_vid:
total_length = total_length
c_i_es = ExpressionSet()
c_o_es = ExpressionSet()
d_0_es = None
out_list = []
psi = None
for i in range(total_length):
if i < src_length:
psi = self.psi_list[i]
s_info = psi.x_s_info
s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))
new_es = ExpressionSet(es=s_es)
if i < driving_length:
d_i_info = self.driving_values[i]
d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']])#.float().to(device="cuda:0")
if d_0_es is None:
d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))
self.retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
self.retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))
new_es.e += d_i_info['exp'] - d_0_es.e
new_es.r += d_i_r - d_0_es.r
new_es.t += d_i_info['t'] - d_0_es.t
r_new = get_rotation_matrix(
s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
d_new = new_es.s * (new_es.e @ r_new) + new_es.t
d_new = self.pipeline.stitching(psi.x_s_user, d_new)
crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
crop_out = self.pipeline.parse_output(crop_out['out'])[0]
crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
cv2.INTER_LINEAR)
out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
np.uint8)
out_list.append(out)
progress(i/total_length, "predicting..")
if len(out_list) == 0:
return None
out_imgs = torch.cat([pil2tensor(img_rgb) for img_rgb in out_list])
return out_imgs
def download_if_no_models(self,
model_type: str = ModelType.HUMAN.value,
progress=gr.Progress(), ):
progress(0, desc="Downloading models...")
if isinstance(model_type, ModelType):
model_type = model_type.value
if model_type == ModelType.ANIMAL.value:
models_urls_dic = MODELS_ANIMAL_URL
model_dir = os.path.join(self.model_dir, "animal")
else:
models_urls_dic = MODELS_URL
model_dir = self.model_dir
for model_name, model_url in models_urls_dic.items():
if model_url.endswith(".pt"):
model_name += ".pt"
elif model_url.endswith(".n2x"):
model_name += ".n2x"
else:
model_name += ".safetensors"
model_path = os.path.join(model_dir, model_name)
if not os.path.exists(model_path):
download_model(model_path, model_url)
@staticmethod
def load_safe_tensor(model, file_path, is_stitcher=False):
def filter_stitcher(checkpoint, prefix):
filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
key.startswith(prefix)}
return filtered_checkpoint
if is_stitcher:
model.load_state_dict(filter_stitcher(safetensors.torch.load_file(file_path), 'retarget_shoulder'))
else:
model.load_state_dict(safetensors.torch.load_file(file_path))
model.eval()
return model
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def get_temp_img_name(self):
self.temp_img_idx += 1
return "expression_edit_preview" + str(self.temp_img_idx) + ".png"
@staticmethod
def parsing_command(command, motoin_link):
command.replace(' ', '')
lines = command.split('\n')
cmd_list = []
total_length = 0
i = 0
for line in lines:
i += 1
if not line:
continue
try:
cmds = line.split('=')
idx = int(cmds[0])
if idx == 0: es = ExpressionSet()
else: es = ExpressionSet(es = motoin_link[idx])
cmds = cmds[1].split(':')
change = int(cmds[0])
keep = int(cmds[1])
except Exception as e:
print(f"(AdvancedLivePortrait) Command Err Line {i}: {line}, :{e}")
return None, None
total_length += change + keep
es.div(change)
cmd_list.append(Command(es, change, keep))
return cmd_list, total_length
def get_face_bboxes(self, image_rgb):
pred = self.detect_model(image_rgb, conf=0.7, device=self.device)
return pred[0].boxes.xyxy.cpu().numpy()
def detect_face(self, image_rgb, crop_factor, sort = True):
original_logger_level = ultralytics_logger.level
ultralytics_logger.setLevel(logging.CRITICAL + 1)
bboxes = self.get_face_bboxes(image_rgb)
w, h = get_rgb_size(image_rgb)
# print(f"w, h:{w, h}")
cx = w / 2
min_diff = w
best_box = None
for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
if bbox_w < 30: continue
diff = abs(cx - (x1 + bbox_w / 2))
if diff < min_diff:
best_box = [x1, y1, x2, y2]
# print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
min_diff = diff
if best_box == None:
print("Failed to detect face!!")
return [0, 0, w, h]
x1, y1, x2, y2 = best_box
#for x1, y1, x2, y2 in bboxes:
bbox_w = x2 - x1
bbox_h = y2 - y1
crop_w = bbox_w * crop_factor
crop_h = bbox_h * crop_factor
crop_w = max(crop_h, crop_w)
crop_h = crop_w
kernel_x = int(x1 + bbox_w / 2)
kernel_y = int(y1 + bbox_h / 2)
new_x1 = int(kernel_x - crop_w / 2)
new_x2 = int(kernel_x + crop_w / 2)
new_y1 = int(kernel_y - crop_h / 2)
new_y2 = int(kernel_y + crop_h / 2)
if not sort:
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
elif w < new_x2:
new_x1 -= (new_x2 - w)
new_x2 = w
if new_x1 < 0:
new_x2 -= new_x1
new_x1 = 0
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
elif h < new_y2:
new_y1 -= (new_y2 - h)
new_y2 = h
if new_y1 < 0:
new_y2 -= new_y1
new_y1 = 0
if w < new_x2 and h < new_y2:
over_x = new_x2 - w
over_y = new_y2 - h
over_min = min(over_x, over_y)
new_x2 -= over_min
new_y2 -= over_min
ultralytics_logger.setLevel(original_logger_level)
return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]
@staticmethod
def retargeting(delta_out, driving_exp, factor, idxes):
for idx in idxes:
# delta_out[0, idx] -= src_exp[0, idx] * factor
delta_out[0, idx] += driving_exp[0, idx] * factor
@staticmethod
def calc_face_region(square, dsize):
region = copy.deepcopy(square)
is_changed = False
if dsize[0] < region[2]:
region[2] = dsize[0]
is_changed = True
if dsize[1] < region[3]:
region[3] = dsize[1]
is_changed = True
return region, is_changed
@staticmethod
def expand_img(rgb_img, square):
crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
cv2.INTER_LINEAR)
return new_img
def prepare_src_image(self, img):
h, w = img.shape[:2]
input_shape = [256,256]
if h != input_shape[0] or w != input_shape[1]:
if 256 < h: interpolation = cv2.INTER_AREA
else: interpolation = cv2.INTER_LINEAR
x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
else:
x = img.copy()
if x.ndim == 3:
x = x[np.newaxis].astype(np.float32) / 255. # HxWx3 -> 1xHxWx3, normalized to 0~1
elif x.ndim == 4:
x = x.astype(np.float32) / 255. # BxHxWx3, normalized to 0~1
else:
raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
x = np.clip(x, 0, 1) # clip to 0~1
x = torch.from_numpy(x).permute(0, 3, 1, 2) # 1xHxWx3 -> 1x3xHxW
x = x.to(self.device)
return x
def get_mask_img(self):
if self.mask_img is None:
self.mask_img = cv2.imread(MASK_TEMPLATES, cv2.IMREAD_COLOR)
return self.mask_img
def crop_face(self, img_rgb, crop_factor):
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
return face_img
def prepare_source(self, source_image, crop_factor, is_video=False, tracking=False):
# source_image_np = (source_image * 255).byte().numpy()
# img_rgb = source_image_np[0]
# print("Prepare source...")
if isinstance(source_image, str):
source_image = image_path_to_array(source_image)
if len(source_image.shape) <= 3:
source_image = source_image[np.newaxis, ...]
psi_list = []
for img_rgb in source_image:
if tracking or len(psi_list) == 0:
crop_region = self.detect_face(img_rgb, crop_factor)
face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
s_x = (face_region[2] - face_region[0]) / 512.
s_y = (face_region[3] - face_region[1]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
mask_ori = cv2.warpAffine(self.get_mask_img(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
mask_ori = mask_ori.astype(np.float32) / 255.
if is_changed:
s = (crop_region[2] - crop_region[0]) / 512.
crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)
face_img = rgb_crop(img_rgb, face_region)
if is_changed: face_img = self.expand_img(face_img, crop_region)
i_s = self.prepare_src_image(face_img)
x_s_info = self.pipeline.get_kp_info(i_s)
f_s_user = self.pipeline.extract_feature_3d(i_s)
x_s_user = self.pipeline.transform_keypoint(x_s_info)
psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
if is_video == False:
return psi
psi_list.append(psi)
return psi_list
def prepare_driving_video(self, face_images):
print("Prepare driving video...")
f_img_np = (face_images * 255).byte().numpy()
out_list = []
for f_img in f_img_np:
i_d = self.prepare_src_image(f_img)
d_info = self.pipeline.get_kp_info(i_d)
out_list.append(d_info)
return out_list
@staticmethod
def calc_fe(x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
rotate_pitch, rotate_yaw, rotate_roll):
x_d_new[0, 20, 1] += smile * -0.01
x_d_new[0, 14, 1] += smile * -0.02
x_d_new[0, 17, 1] += smile * 0.0065
x_d_new[0, 17, 2] += smile * 0.003
x_d_new[0, 13, 1] += smile * -0.00275
x_d_new[0, 16, 1] += smile * -0.00275
x_d_new[0, 3, 1] += smile * -0.0035
x_d_new[0, 7, 1] += smile * -0.0035
x_d_new[0, 19, 1] += mouth * 0.001
x_d_new[0, 19, 2] += mouth * 0.0001
x_d_new[0, 17, 1] += mouth * -0.0001
rotate_pitch -= mouth * 0.05
x_d_new[0, 20, 2] += eee * -0.001
x_d_new[0, 20, 1] += eee * -0.001
#x_d_new[0, 19, 1] += eee * 0.0006
x_d_new[0, 14, 1] += eee * -0.001
x_d_new[0, 14, 1] += woo * 0.001
x_d_new[0, 3, 1] += woo * -0.0005
x_d_new[0, 7, 1] += woo * -0.0005
x_d_new[0, 17, 2] += woo * -0.0005
x_d_new[0, 11, 1] += wink * 0.001
x_d_new[0, 13, 1] += wink * -0.0003
x_d_new[0, 17, 0] += wink * 0.0003
x_d_new[0, 17, 1] += wink * 0.0003
x_d_new[0, 3, 1] += wink * -0.0003
rotate_roll -= wink * 0.1
rotate_yaw -= wink * 0.1
if 0 < pupil_x:
x_d_new[0, 11, 0] += pupil_x * 0.0007
x_d_new[0, 15, 0] += pupil_x * 0.001
else:
x_d_new[0, 11, 0] += pupil_x * 0.001
x_d_new[0, 15, 0] += pupil_x * 0.0007
x_d_new[0, 11, 1] += pupil_y * -0.001
x_d_new[0, 15, 1] += pupil_y * -0.001
eyes -= pupil_y / 2.
x_d_new[0, 11, 1] += eyes * -0.001
x_d_new[0, 13, 1] += eyes * 0.0003
x_d_new[0, 15, 1] += eyes * -0.001
x_d_new[0, 16, 1] += eyes * 0.0003
x_d_new[0, 1, 1] += eyes * -0.00025
x_d_new[0, 2, 1] += eyes * 0.00025
if 0 < eyebrow:
x_d_new[0, 1, 1] += eyebrow * 0.001
x_d_new[0, 2, 1] += eyebrow * -0.001
else:
x_d_new[0, 1, 0] += eyebrow * -0.001
x_d_new[0, 2, 0] += eyebrow * 0.001
x_d_new[0, 1, 1] += eyebrow * 0.0003
x_d_new[0, 2, 1] += eyebrow * -0.0003
return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])
class ExpressionSet:
def __init__(self, erst=None, es=None):
if es is not None:
self.e = copy.deepcopy(es.e) # [:, :, :]
self.r = copy.deepcopy(es.r) # [:]
self.s = copy.deepcopy(es.s)
self.t = copy.deepcopy(es.t)
elif erst is not None:
self.e = erst[0]
self.r = erst[1]
self.s = erst[2]
self.t = erst[3]
else:
self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(self.get_device())
self.r = torch.Tensor([0, 0, 0])
self.s = 0
self.t = 0
def div(self, value):
self.e /= value
self.r /= value
self.s /= value
self.t /= value
def add(self, other):
self.e += other.e
self.r += other.r
self.s += other.s
self.t += other.t
def sub(self, other):
self.e -= other.e
self.r -= other.r
self.s -= other.s
self.t -= other.t
def mul(self, value):
self.e *= value
self.r *= value
self.s *= value
self.t *= value
@staticmethod
def get_device():
if torch.cuda.is_available():
return "cuda"
elif torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def logging_time(original_fn):
def wrapper_fn(*args, **kwargs):
start_time = time.time()
result = original_fn(*args, **kwargs)
end_time = time.time()
print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
return result
return wrapper_fn
def save_exp_data(file_name: str, save_exp: ExpressionSet = None):
if save_exp is None or not file_name:
return file_name
with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), "wb") as f:
dill.dump(save_exp, f)
return file_name
def load_exp_data(self, file_name, ratio):
file_list = [os.path.splitext(file)[0] for file in os.listdir(EXP_OUTPUT_DIR) if file.endswith('.exp')]
with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), 'rb') as f:
es = dill.load(f)
es.mul(ratio)
return es
def handle_exp_data(code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
if add_exp is None:
es = ExpressionSet()
else:
es = ExpressionSet(es=add_exp)
codes = [code1, code2, code3, code4, code5]
values = [value1, value2, value3, value4, value5]
for i in range(5):
idx = int(codes[i] / 10)
r = codes[i] % 10
es.e[0, idx, r] += values[i] * 0.001
return es
def print_exp_data(cut_noise, exp=None):
if exp is None:
return exp
cuted_list = []
e = exp.exp * 1000
for idx in range(21):
for r in range(3):
a = abs(e[0, idx, r])
if (cut_noise < a): cuted_list.append((a, e[0, idx, r], idx * 10 + r))
sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
print(f"sorted_list: {[[item[2], round(float(item[1]), 1)] for item in sorted_list]}")
return exp
class Command:
def __init__(self,
es: ExpressionSet,
change,
keep):
self.es = es
self.change = change
self.keep = keep