|
|
|
|
|
import os |
|
from glob import glob |
|
import os.path as osp |
|
import imageio |
|
import numpy as np |
|
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False) |
|
|
|
|
|
def load_image_rgb(image_path: str): |
|
if not osp.exists(image_path): |
|
raise FileNotFoundError(f"Image not found: {image_path}") |
|
img = cv2.imread(image_path, cv2.IMREAD_COLOR) |
|
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
|
|
|
|
def load_driving_info(driving_info): |
|
driving_video_ori = [] |
|
|
|
def load_images_from_directory(directory): |
|
image_paths = sorted(glob(osp.join(directory, '*.png')) + glob(osp.join(directory, '*.jpg'))) |
|
return [load_image_rgb(im_path) for im_path in image_paths] |
|
|
|
def load_images_from_video(file_path): |
|
reader = imageio.get_reader(file_path) |
|
return [image for idx, image in enumerate(reader)] |
|
|
|
if osp.isdir(driving_info): |
|
driving_video_ori = load_images_from_directory(driving_info) |
|
elif osp.isfile(driving_info): |
|
driving_video_ori = load_images_from_video(driving_info) |
|
|
|
return driving_video_ori |
|
|
|
|
|
def contiguous(obj): |
|
if not obj.flags.c_contiguous: |
|
obj = obj.copy(order="C") |
|
return obj |
|
|
|
|
|
def _resize_to_limit(img: np.ndarray, max_dim=1920, n=2): |
|
""" |
|
ajust the size of the image so that the maximum dimension does not exceed max_dim, and the width and the height of the image are multiples of n. |
|
:param img: the image to be processed. |
|
:param max_dim: the maximum dimension constraint. |
|
:param n: the number that needs to be multiples of. |
|
:return: the adjusted image. |
|
""" |
|
h, w = img.shape[:2] |
|
|
|
|
|
if max_dim > 0 and max(h, w) > max_dim: |
|
if h > w: |
|
new_h = max_dim |
|
new_w = int(w * (max_dim / h)) |
|
else: |
|
new_w = max_dim |
|
new_h = int(h * (max_dim / w)) |
|
img = cv2.resize(img, (new_w, new_h)) |
|
|
|
|
|
n = max(n, 1) |
|
new_h = img.shape[0] - (img.shape[0] % n) |
|
new_w = img.shape[1] - (img.shape[1] % n) |
|
|
|
if new_h == 0 or new_w == 0: |
|
|
|
return img |
|
|
|
if new_h != img.shape[0] or new_w != img.shape[1]: |
|
img = img[:new_h, :new_w] |
|
|
|
return img |
|
|
|
|
|
def load_img_online(obj, mode="bgr", **kwargs): |
|
max_dim = kwargs.get("max_dim", 1920) |
|
n = kwargs.get("n", 2) |
|
if isinstance(obj, str): |
|
if mode.lower() == "gray": |
|
img = cv2.imread(obj, cv2.IMREAD_GRAYSCALE) |
|
else: |
|
img = cv2.imread(obj, cv2.IMREAD_COLOR) |
|
else: |
|
img = obj |
|
|
|
|
|
img = _resize_to_limit(img, max_dim=max_dim, n=n) |
|
|
|
if mode.lower() == "bgr": |
|
return contiguous(img) |
|
elif mode.lower() == "rgb": |
|
return contiguous(img[..., ::-1]) |
|
else: |
|
raise Exception(f"Unknown mode {mode}") |
|
|