|
import numpy as np |
|
import torch |
|
|
|
from modules.utils.helper import concat_feat |
|
from modules.utils.camera import headpose_pred_to_degree, get_rotation_matrix |
|
from modules.config.inference_config import InferenceConfig |
|
|
|
|
|
class LivePortraitWrapper(object): |
|
|
|
def __init__(self, cfg: InferenceConfig, appearance_feature_extractor, motion_extractor, |
|
warping_module, spade_generator, stitching_retargeting_module): |
|
|
|
self.appearance_feature_extractor = appearance_feature_extractor |
|
self.motion_extractor = motion_extractor |
|
self.warping_module = warping_module |
|
self.spade_generator = spade_generator |
|
self.stitching_retargeting_module = stitching_retargeting_module |
|
|
|
self.cfg = cfg |
|
|
|
def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: |
|
""" get the appearance feature of the image by F |
|
x: Bx3xHxW, normalized to 0~1 |
|
""" |
|
with torch.no_grad(): |
|
feature_3d = self.appearance_feature_extractor(x) |
|
|
|
return feature_3d.float() |
|
|
|
def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: |
|
""" get the implicit keypoint information |
|
x: Bx3xHxW, normalized to 0~1 |
|
flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape |
|
return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' |
|
""" |
|
with torch.no_grad(): |
|
kp_info = self.motion_extractor(x) |
|
|
|
if self.cfg.flag_use_half_precision: |
|
|
|
for k, v in kp_info.items(): |
|
if isinstance(v, torch.Tensor): |
|
kp_info[k] = v.float() |
|
|
|
flag_refine_info: bool = kwargs.get('flag_refine_info', True) |
|
if flag_refine_info: |
|
bs = kp_info['kp'].shape[0] |
|
kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] |
|
kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] |
|
kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] |
|
kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) |
|
kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) |
|
|
|
return kp_info |
|
def transform_keypoint(self, kp_info: dict): |
|
""" |
|
transform the implicit keypoints with the pose, shift, and expression deformation |
|
kp: BxNx3 |
|
""" |
|
kp = kp_info['kp'] |
|
pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] |
|
|
|
t, exp = kp_info['t'], kp_info['exp'] |
|
scale = kp_info['scale'] |
|
|
|
pitch = headpose_pred_to_degree(pitch) |
|
yaw = headpose_pred_to_degree(yaw) |
|
roll = headpose_pred_to_degree(roll) |
|
|
|
bs = kp.shape[0] |
|
if kp.ndim == 2: |
|
num_kp = kp.shape[1] // 3 |
|
else: |
|
num_kp = kp.shape[1] |
|
|
|
rot_mat = get_rotation_matrix(pitch, yaw, roll) |
|
|
|
|
|
kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) |
|
kp_transformed *= scale[..., None] |
|
kp_transformed[:, :, 0:2] += t[:, None, 0:2] |
|
|
|
return kp_transformed |
|
|
|
def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" |
|
kp_source: BxNx3 |
|
kp_driving: BxNx3 |
|
Return: Bx(3*num_kp+2) |
|
""" |
|
feat_stiching = concat_feat(kp_source, kp_driving) |
|
|
|
with torch.no_grad(): |
|
delta = self.stitching_retargeting_module['stitching'](feat_stiching) |
|
|
|
return delta |
|
|
|
def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" conduct the stitching |
|
kp_source: Bxnum_kpx3 |
|
kp_driving: Bxnum_kpx3 |
|
""" |
|
|
|
if self.stitching_retargeting_module is not None: |
|
|
|
bs, num_kp = kp_source.shape[:2] |
|
|
|
kp_driving_new = kp_driving.clone() |
|
delta = self.stitch(kp_source, kp_driving_new) |
|
|
|
delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) |
|
delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) |
|
|
|
kp_driving_new += delta_exp |
|
kp_driving_new[..., :2] += delta_tx_ty |
|
|
|
return kp_driving_new |
|
|
|
return kp_driving |
|
|
|
def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: |
|
""" get the image after the warping of the implicit keypoints |
|
feature_3d: Bx32x16x64x64, feature volume |
|
kp_source: BxNx3 |
|
kp_driving: BxNx3 |
|
""" |
|
|
|
with torch.no_grad(): |
|
|
|
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) |
|
|
|
ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) |
|
|
|
|
|
if self.cfg.flag_use_half_precision: |
|
for k, v in ret_dct.items(): |
|
if isinstance(v, torch.Tensor): |
|
ret_dct[k] = v.float() |
|
|
|
return ret_dct |
|
|
|
def parse_output(self, out: torch.Tensor) -> np.ndarray: |
|
""" construct the output as standard |
|
return: 1xHxWx3, uint8 |
|
""" |
|
out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) |
|
out = np.clip(out, 0, 1) |
|
out = np.clip(out * 255, 0, 255).astype(np.uint8) |
|
|
|
return out |
|
|