import numpy as np import torch from modules.utils.helper import concat_feat from modules.utils.camera import headpose_pred_to_degree, get_rotation_matrix from modules.config.inference_config import InferenceConfig class LivePortraitWrapper(object): def __init__(self, cfg: InferenceConfig, appearance_feature_extractor, motion_extractor, warping_module, spade_generator, stitching_retargeting_module): self.appearance_feature_extractor = appearance_feature_extractor self.motion_extractor = motion_extractor self.warping_module = warping_module self.spade_generator = spade_generator self.stitching_retargeting_module = stitching_retargeting_module self.cfg = cfg def extract_feature_3d(self, x: torch.Tensor) -> torch.Tensor: """ get the appearance feature of the image by F x: Bx3xHxW, normalized to 0~1 """ with torch.no_grad(): feature_3d = self.appearance_feature_extractor(x) return feature_3d.float() def get_kp_info(self, x: torch.Tensor, **kwargs) -> dict: """ get the implicit keypoint information x: Bx3xHxW, normalized to 0~1 flag_refine_info: whether to trandform the pose to degrees and the dimention of the reshape return: A dict contains keys: 'pitch', 'yaw', 'roll', 't', 'exp', 'scale', 'kp' """ with torch.no_grad(): kp_info = self.motion_extractor(x) if self.cfg.flag_use_half_precision: # float the dict for k, v in kp_info.items(): if isinstance(v, torch.Tensor): kp_info[k] = v.float() flag_refine_info: bool = kwargs.get('flag_refine_info', True) if flag_refine_info: bs = kp_info['kp'].shape[0] kp_info['pitch'] = headpose_pred_to_degree(kp_info['pitch'])[:, None] # Bx1 kp_info['yaw'] = headpose_pred_to_degree(kp_info['yaw'])[:, None] # Bx1 kp_info['roll'] = headpose_pred_to_degree(kp_info['roll'])[:, None] # Bx1 kp_info['kp'] = kp_info['kp'].reshape(bs, -1, 3) # BxNx3 kp_info['exp'] = kp_info['exp'].reshape(bs, -1, 3) # BxNx3 return kp_info def transform_keypoint(self, kp_info: dict): """ transform the implicit keypoints with the pose, shift, and expression deformation kp: BxNx3 """ kp = kp_info['kp'] # (bs, k, 3) pitch, yaw, roll = kp_info['pitch'], kp_info['yaw'], kp_info['roll'] t, exp = kp_info['t'], kp_info['exp'] scale = kp_info['scale'] pitch = headpose_pred_to_degree(pitch) yaw = headpose_pred_to_degree(yaw) roll = headpose_pred_to_degree(roll) bs = kp.shape[0] if kp.ndim == 2: num_kp = kp.shape[1] // 3 # Bx(num_kpx3) else: num_kp = kp.shape[1] # Bxnum_kpx3 rot_mat = get_rotation_matrix(pitch, yaw, roll) # (bs, 3, 3) # Eqn.2: s * (R * x_c,s + exp) + t kp_transformed = kp.view(bs, num_kp, 3) @ rot_mat + exp.view(bs, num_kp, 3) kp_transformed *= scale[..., None] # (bs, k, 3) * (bs, 1, 1) = (bs, k, 3) kp_transformed[:, :, 0:2] += t[:, None, 0:2] # remove z, only apply tx ty return kp_transformed def stitch(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ kp_source: BxNx3 kp_driving: BxNx3 Return: Bx(3*num_kp+2) """ feat_stiching = concat_feat(kp_source, kp_driving) with torch.no_grad(): delta = self.stitching_retargeting_module['stitching'](feat_stiching) return delta def stitching(self, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ conduct the stitching kp_source: Bxnum_kpx3 kp_driving: Bxnum_kpx3 """ if self.stitching_retargeting_module is not None: bs, num_kp = kp_source.shape[:2] kp_driving_new = kp_driving.clone() delta = self.stitch(kp_source, kp_driving_new) delta_exp = delta[..., :3*num_kp].reshape(bs, num_kp, 3) # 1x20x3 delta_tx_ty = delta[..., 3*num_kp:3*num_kp+2].reshape(bs, 1, 2) # 1x1x2 kp_driving_new += delta_exp kp_driving_new[..., :2] += delta_tx_ty return kp_driving_new return kp_driving def warp_decode(self, feature_3d: torch.Tensor, kp_source: torch.Tensor, kp_driving: torch.Tensor) -> torch.Tensor: """ get the image after the warping of the implicit keypoints feature_3d: Bx32x16x64x64, feature volume kp_source: BxNx3 kp_driving: BxNx3 """ # The line 18 in Algorithm 1: D(W(f_s; x_s, x′_d,i)) with torch.no_grad(): # get decoder input ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving) # decode ret_dct['out'] = self.spade_generator(feature=ret_dct['out']) # float the dict if self.cfg.flag_use_half_precision: for k, v in ret_dct.items(): if isinstance(v, torch.Tensor): ret_dct[k] = v.float() return ret_dct def parse_output(self, out: torch.Tensor) -> np.ndarray: """ construct the output as standard return: 1xHxWx3, uint8 """ out = np.transpose(out.data.cpu().numpy(), [0, 2, 3, 1]) # 1x3xHxW -> 1xHxWx3 out = np.clip(out, 0, 1) # clip to 0~1 out = np.clip(out * 255, 0, 255).astype(np.uint8) # 0~1 -> 0~255 return out