# coding: utf-8 """ This file defines various neural network live_portrait and utility functions, including convolutional and residual blocks, normalizations, and functions for spatial transformation and tensor manipulation. """ from torch import nn import torch.nn.functional as F import torch import torch.nn.utils.spectral_norm as spectral_norm import math import warnings def kp2gaussian(kp, spatial_size, kp_variance): """ Transform a keypoint into gaussian like representation """ mean = kp coordinate_grid = make_coordinate_grid(spatial_size, mean) number_of_leading_dimensions = len(mean.shape) - 1 shape = (1,) * number_of_leading_dimensions + coordinate_grid.shape coordinate_grid = coordinate_grid.view(*shape) repeats = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 1) coordinate_grid = coordinate_grid.repeat(*repeats) # Preprocess kp shape shape = mean.shape[:number_of_leading_dimensions] + (1, 1, 1, 3) mean = mean.view(*shape) mean_sub = (coordinate_grid - mean) out = torch.exp(-0.5 * (mean_sub ** 2).sum(-1) / kp_variance) return out def make_coordinate_grid(spatial_size, ref, **kwargs): d, h, w = spatial_size x = torch.arange(w).type(ref.dtype).to(ref.device) y = torch.arange(h).type(ref.dtype).to(ref.device) z = torch.arange(d).type(ref.dtype).to(ref.device) # NOTE: must be right-down-in x = (2 * (x / (w - 1)) - 1) # the x axis faces to the right y = (2 * (y / (h - 1)) - 1) # the y axis faces to the bottom z = (2 * (z / (d - 1)) - 1) # the z axis faces to the inner yy = y.view(1, -1, 1).repeat(d, 1, w) xx = x.view(1, 1, -1).repeat(d, h, 1) zz = z.view(-1, 1, 1).repeat(1, h, w) meshed = torch.cat([xx.unsqueeze_(3), yy.unsqueeze_(3), zz.unsqueeze_(3)], 3) return meshed class ConvT2d(nn.Module): """ Upsampling block for use in decoder. """ def __init__(self, in_features, out_features, kernel_size=3, stride=2, padding=1, output_padding=1): super(ConvT2d, self).__init__() self.convT = nn.ConvTranspose2d(in_features, out_features, kernel_size=kernel_size, stride=stride, padding=padding, output_padding=output_padding) self.norm = nn.InstanceNorm2d(out_features) def forward(self, x): out = self.convT(x) out = self.norm(out) out = F.leaky_relu(out) return out class ResBlock3d(nn.Module): """ Res block, preserve spatial resolution. """ def __init__(self, in_features, kernel_size, padding): super(ResBlock3d, self).__init__() self.conv1 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.conv2 = nn.Conv3d(in_channels=in_features, out_channels=in_features, kernel_size=kernel_size, padding=padding) self.norm1 = nn.BatchNorm3d(in_features, affine=True) self.norm2 = nn.BatchNorm3d(in_features, affine=True) def forward(self, x): out = self.norm1(x) out = F.relu(out) out = self.conv1(out) out = self.norm2(out) out = F.relu(out) out = self.conv2(out) out += x return out class UpBlock3d(nn.Module): """ Upsampling block for use in decoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(UpBlock3d, self).__init__() self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm3d(out_features, affine=True) def forward(self, x): out = F.interpolate(x, scale_factor=(1, 2, 2)) out = self.conv(out) out = self.norm(out) out = F.relu(out) return out class DownBlock2d(nn.Module): """ Downsampling block for use in encoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(DownBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) self.pool = nn.AvgPool2d(kernel_size=(2, 2)) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) out = self.pool(out) return out class DownBlock3d(nn.Module): """ Downsampling block for use in encoder. """ def __init__(self, in_features, out_features, kernel_size=3, padding=1, groups=1): super(DownBlock3d, self).__init__() ''' self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups, stride=(1, 2, 2)) ''' self.conv = nn.Conv3d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm3d(out_features, affine=True) self.pool = nn.AvgPool3d(kernel_size=(1, 2, 2)) def forward(self, x): out = self.conv(x) out = self.norm(out) out = F.relu(out) out = self.pool(out) return out class SameBlock2d(nn.Module): """ Simple block, preserve spatial resolution. """ def __init__(self, in_features, out_features, groups=1, kernel_size=3, padding=1, lrelu=False): super(SameBlock2d, self).__init__() self.conv = nn.Conv2d(in_channels=in_features, out_channels=out_features, kernel_size=kernel_size, padding=padding, groups=groups) self.norm = nn.BatchNorm2d(out_features, affine=True) if lrelu: self.ac = nn.LeakyReLU() else: self.ac = nn.ReLU() def forward(self, x): out = self.conv(x) out = self.norm(out) out = self.ac(out) return out class Encoder(nn.Module): """ Hourglass Encoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Encoder, self).__init__() down_blocks = [] for i in range(num_blocks): down_blocks.append(DownBlock3d(in_features if i == 0 else min(max_features, block_expansion * (2 ** i)), min(max_features, block_expansion * (2 ** (i + 1))), kernel_size=3, padding=1)) self.down_blocks = nn.ModuleList(down_blocks) def forward(self, x): outs = [x] for down_block in self.down_blocks: outs.append(down_block(outs[-1])) return outs class Decoder(nn.Module): """ Hourglass Decoder """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Decoder, self).__init__() up_blocks = [] for i in range(num_blocks)[::-1]: in_filters = (1 if i == num_blocks - 1 else 2) * min(max_features, block_expansion * (2 ** (i + 1))) out_filters = min(max_features, block_expansion * (2 ** i)) up_blocks.append(UpBlock3d(in_filters, out_filters, kernel_size=3, padding=1)) self.up_blocks = nn.ModuleList(up_blocks) self.out_filters = block_expansion + in_features self.conv = nn.Conv3d(in_channels=self.out_filters, out_channels=self.out_filters, kernel_size=3, padding=1) self.norm = nn.BatchNorm3d(self.out_filters, affine=True) def forward(self, x): out = x.pop() for up_block in self.up_blocks: out = up_block(out) skip = x.pop() out = torch.cat([out, skip], dim=1) out = self.conv(out) out = self.norm(out) out = F.relu(out) return out class Hourglass(nn.Module): """ Hourglass architecture. """ def __init__(self, block_expansion, in_features, num_blocks=3, max_features=256): super(Hourglass, self).__init__() self.encoder = Encoder(block_expansion, in_features, num_blocks, max_features) self.decoder = Decoder(block_expansion, in_features, num_blocks, max_features) self.out_filters = self.decoder.out_filters def forward(self, x): return self.decoder(self.encoder(x)) class SPADE(nn.Module): def __init__(self, norm_nc, label_nc): super().__init__() self.param_free_norm = nn.InstanceNorm2d(norm_nc, affine=False) nhidden = 128 self.mlp_shared = nn.Sequential( nn.Conv2d(label_nc, nhidden, kernel_size=3, padding=1), nn.ReLU()) self.mlp_gamma = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) self.mlp_beta = nn.Conv2d(nhidden, norm_nc, kernel_size=3, padding=1) def forward(self, x, segmap): normalized = self.param_free_norm(x) segmap = F.interpolate(segmap, size=x.size()[2:], mode='nearest') actv = self.mlp_shared(segmap) gamma = self.mlp_gamma(actv) beta = self.mlp_beta(actv) out = normalized * (1 + gamma) + beta return out class SPADEResnetBlock(nn.Module): def __init__(self, fin, fout, norm_G, label_nc, use_se=False, dilation=1): super().__init__() # Attributes self.learned_shortcut = (fin != fout) fmiddle = min(fin, fout) self.use_se = use_se # create conv layers self.conv_0 = nn.Conv2d(fin, fmiddle, kernel_size=3, padding=dilation, dilation=dilation) self.conv_1 = nn.Conv2d(fmiddle, fout, kernel_size=3, padding=dilation, dilation=dilation) if self.learned_shortcut: self.conv_s = nn.Conv2d(fin, fout, kernel_size=1, bias=False) # apply spectral norm if specified if 'spectral' in norm_G: self.conv_0 = spectral_norm(self.conv_0) self.conv_1 = spectral_norm(self.conv_1) if self.learned_shortcut: self.conv_s = spectral_norm(self.conv_s) # define normalization layers self.norm_0 = SPADE(fin, label_nc) self.norm_1 = SPADE(fmiddle, label_nc) if self.learned_shortcut: self.norm_s = SPADE(fin, label_nc) def forward(self, x, seg1): x_s = self.shortcut(x, seg1) dx = self.conv_0(self.actvn(self.norm_0(x, seg1))) dx = self.conv_1(self.actvn(self.norm_1(dx, seg1))) out = x_s + dx return out def shortcut(self, x, seg1): if self.learned_shortcut: x_s = self.conv_s(self.norm_s(x, seg1)) else: x_s = x return x_s def actvn(self, x): return F.leaky_relu(x, 2e-1) def filter_state_dict(state_dict, remove_name='fc'): new_state_dict = {} for key in state_dict: if remove_name in key: continue new_state_dict[key] = state_dict[key] return new_state_dict class GRN(nn.Module): """ GRN (Global Response Normalization) layer """ def __init__(self, dim): super().__init__() self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim)) def forward(self, x): Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True) Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) return self.gamma * (x * Nx) + self.beta + x class LayerNorm(nn.Module): r""" LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"): super().__init__() self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.eps = eps self.data_format = data_format if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError self.normalized_shape = (normalized_shape, ) def forward(self, x): if self.data_format == "channels_last": return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) elif self.data_format == "channels_first": u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def drop_path(x, drop_prob=0., training=False, scale_by_keep=True): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """ Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None, scale_by_keep=True): super(DropPath, self).__init__() self.drop_prob = drop_prob self.scale_by_keep = scale_by_keep def forward(self, x): return drop_path(x, self.drop_prob, self.training, self.scale_by_keep) def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): return _no_grad_trunc_normal_(tensor, mean, std, a, b)