File size: 7,539 Bytes
0a9bdfb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
img_scale = (640, 640) # width, height
# model settings
model = dict(
type='YOLOX',
data_preprocessor=dict(
type='DetDataPreprocessor',
pad_size_divisor=32,
batch_augments=[
dict(
type='BatchSyncRandomResize',
random_size_range=(480, 800),
size_divisor=32,
interval=10)
]),
backbone=dict(
type='CSPDarknet',
deepen_factor=1.0,
widen_factor=1.0,
out_indices=(2, 3, 4),
use_depthwise=False,
spp_kernal_sizes=(5, 9, 13),
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
),
neck=dict(
type='YOLOXPAFPN',
in_channels=[256, 512, 1024],
out_channels=256,
num_csp_blocks=3,
use_depthwise=False,
upsample_cfg=dict(scale_factor=2, mode='nearest'),
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish')),
bbox_head=dict(
type='YOLOXHead',
num_classes=80,
in_channels=256,
feat_channels=256,
stacked_convs=2,
strides=(8, 16, 32),
use_depthwise=False,
norm_cfg=dict(type='BN', momentum=0.03, eps=0.001),
act_cfg=dict(type='Swish'),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_bbox=dict(
type='IoULoss',
mode='square',
eps=1e-16,
reduction='sum',
loss_weight=5.0),
loss_obj=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
loss_l1=dict(type='L1Loss', reduction='sum', loss_weight=1.0)),
train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)),
# In order to align the source code, the threshold of the val phase is
# 0.01, and the threshold of the test phase is 0.001.
test_cfg=dict(score_thr=0.01, nms=dict(type='nms', iou_threshold=0.65)))
# dataset settings
data_root = 'data/coco/'
dataset_type = 'CocoDataset'
# Example to use different file client
# Method 1: simply set the data root and let the file I/O module
# automatically infer from prefix (not support LMDB and Memcache yet)
# data_root = 's3://openmmlab/datasets/detection/coco/'
# Method 2: Use `backend_args`, `file_client_args` in versions before 3.0.0rc6
# backend_args = dict(
# backend='petrel',
# path_mapping=dict({
# './data/': 's3://openmmlab/datasets/detection/',
# 'data/': 's3://openmmlab/datasets/detection/'
# }))
backend_args = None
train_pipeline = [
dict(type='Mosaic', img_scale=img_scale, pad_val=114.0),
dict(
type='RandomAffine',
scaling_ratio_range=(0.1, 2),
# img_scale is (width, height)
border=(-img_scale[0] // 2, -img_scale[1] // 2)),
dict(
type='MixUp',
img_scale=img_scale,
ratio_range=(0.8, 1.6),
pad_val=114.0),
dict(type='YOLOXHSVRandomAug'),
dict(type='RandomFlip', prob=0.5),
# According to the official implementation, multi-scale
# training is not considered here but in the
# 'mmdet/models/detectors/yolox.py'.
# Resize and Pad are for the last 15 epochs when Mosaic,
# RandomAffine, and MixUp are closed by YOLOXModeSwitchHook.
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
# If the image is three-channel, the pad value needs
# to be set separately for each channel.
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='FilterAnnotations', min_gt_bbox_wh=(1, 1), keep_empty=False),
dict(type='PackDetInputs')
]
train_dataset = dict(
# use MultiImageMixDataset wrapper to support mosaic and mixup
type='MultiImageMixDataset',
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_train2017.json',
data_prefix=dict(img='train2017/'),
pipeline=[
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='LoadAnnotations', with_bbox=True)
],
filter_cfg=dict(filter_empty_gt=False, min_size=32),
backend_args=backend_args),
pipeline=train_pipeline)
test_pipeline = [
dict(type='LoadImageFromFile', backend_args=backend_args),
dict(type='Resize', scale=img_scale, keep_ratio=True),
dict(
type='Pad',
pad_to_square=True,
pad_val=dict(img=(114.0, 114.0, 114.0))),
dict(type='LoadAnnotations', with_bbox=True),
dict(
type='PackDetInputs',
meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
'scale_factor'))
]
train_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=True),
dataset=train_dataset)
val_dataloader = dict(
batch_size=8,
num_workers=4,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
ann_file='annotations/instances_val2017.json',
data_prefix=dict(img='val2017/'),
test_mode=True,
pipeline=test_pipeline,
backend_args=backend_args))
test_dataloader = val_dataloader
val_evaluator = dict(
type='CocoMetric',
ann_file=data_root + 'annotations/instances_val2017.json',
metric='bbox',
backend_args=backend_args)
test_evaluator = val_evaluator
# training settings
max_epochs = 300
num_last_epochs = 15
interval = 10
train_cfg = dict(max_epochs=max_epochs, val_interval=interval)
# optimizer
# default 8 gpu
base_lr = 0.01
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(
type='SGD', lr=base_lr, momentum=0.9, weight_decay=5e-4,
nesterov=True),
paramwise_cfg=dict(norm_decay_mult=0., bias_decay_mult=0.))
# learning rate
param_scheduler = [
dict(
# use quadratic formula to warm up 5 epochs
# and lr is updated by iteration
# TODO: fix default scope in get function
type='mmdet.QuadraticWarmupLR',
by_epoch=True,
begin=0,
end=5,
convert_to_iter_based=True),
dict(
# use cosine lr from 5 to 285 epoch
type='CosineAnnealingLR',
eta_min=base_lr * 0.05,
begin=5,
T_max=max_epochs - num_last_epochs,
end=max_epochs - num_last_epochs,
by_epoch=True,
convert_to_iter_based=True),
dict(
# use fixed lr during last 15 epochs
type='ConstantLR',
by_epoch=True,
factor=1,
begin=max_epochs - num_last_epochs,
end=max_epochs,
)
]
default_hooks = dict(
checkpoint=dict(
interval=interval,
max_keep_ckpts=3 # only keep latest 3 checkpoints
))
custom_hooks = [
dict(
type='YOLOXModeSwitchHook',
num_last_epochs=num_last_epochs,
priority=48),
dict(type='SyncNormHook', priority=48),
dict(
type='EMAHook',
ema_type='ExpMomentumEMA',
momentum=0.0001,
update_buffers=True,
priority=49)
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (8 samples per GPU)
auto_scale_lr = dict(base_batch_size=64)
|