|
import numpy as np |
|
import argparse |
|
import torch |
|
import copy |
|
import cv2 |
|
import os |
|
import moviepy.video.io.ImageSequenceClip |
|
from datetime import datetime |
|
import gc |
|
from huggingface_hub import hf_hub_download |
|
|
|
from pose.script.dwpose import DWposeDetector, draw_pose |
|
from pose.script.util import size_calculate, warpAffine_kps |
|
|
|
|
|
''' |
|
Detect dwpose from img, then align it by scale parameters |
|
img: frame from the pose video |
|
detector: DWpose |
|
scales: scale parameters |
|
''' |
|
class PoseAlignmentInference: |
|
def __init__(self): |
|
self.detector = None |
|
self.model_paths = { |
|
"det_ckpt": os.path.join("pretrained_weights", "dwpose", "yolox_l_8x8_300e_coco.pth"), |
|
"pose_ckpt": os.path.join("pretrained_weights", "dwpose", "dw-ll_ucoco_384.pth") |
|
} |
|
self.config_paths = { |
|
"pose_config": os.path.join("pose", "config", "dwpose-l_384x288.py"), |
|
"det_config": os.path.join("pose", "config", "yolox_l_8xb8-300e_coco.py"), |
|
} |
|
self.output_dir = os.path.join("assets", "video") |
|
|
|
|
|
def align_pose( |
|
self, |
|
vidfn: str, |
|
imgfn_refer: str, |
|
detect_resolution: int, |
|
image_resolution: int, |
|
align_frame: int, |
|
max_frame: int, |
|
): |
|
dt_file_name = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") |
|
outfn=os.path.abspath(os.path.join(self.output_dir, f'{dt_file_name}_demo.mp4')) |
|
outfn_align_pose_video=os.path.abspath(os.path.join(self.output_dir, f'{dt_file_name}.mp4')) |
|
|
|
video = cv2.VideoCapture(vidfn) |
|
width= video.get(cv2.CAP_PROP_FRAME_WIDTH) |
|
height= video.get(cv2.CAP_PROP_FRAME_HEIGHT) |
|
|
|
total_frame= video.get(cv2.CAP_PROP_FRAME_COUNT) |
|
fps= video.get(cv2.CAP_PROP_FPS) |
|
|
|
print("height:", height) |
|
print("width:", width) |
|
print("fps:", fps) |
|
|
|
H_in, W_in = height, width |
|
H_out, W_out = size_calculate(H_in,W_in, detect_resolution) |
|
H_out, W_out = size_calculate(H_out,W_out, image_resolution) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
self.detector = DWposeDetector( |
|
det_config = self.config_paths["det_config"], |
|
det_ckpt = self.model_paths["det_ckpt"], |
|
pose_config = self.config_paths["pose_config"], |
|
pose_ckpt = self.model_paths["pose_ckpt"], |
|
keypoints_only=False |
|
) |
|
detector = self.detector.to(device) |
|
|
|
refer_img = cv2.imread(imgfn_refer) |
|
output_refer, pose_refer = detector(refer_img,detect_resolution=detect_resolution, image_resolution=image_resolution, output_type='cv2',return_pose_dict=True) |
|
body_ref_img = pose_refer['bodies']['candidate'] |
|
hands_ref_img = pose_refer['hands'] |
|
faces_ref_img = pose_refer['faces'] |
|
output_refer = cv2.cvtColor(output_refer, cv2.COLOR_RGB2BGR) |
|
|
|
|
|
skip_frames = align_frame |
|
max_frame = max_frame |
|
pose_list, video_frame_buffer, video_pose_buffer = [], [], [] |
|
|
|
|
|
cap = cv2.VideoCapture('2.mp4') |
|
while cap.isOpened(): |
|
ret, frame = cap.read() |
|
if ret: |
|
cv2.imshow('frame', frame) |
|
key = cv2.waitKey(25) |
|
if key == ord('q'): |
|
cap.release() |
|
break |
|
else: |
|
cap.release() |
|
cv2.destroyAllWindows() |
|
|
|
|
|
for i in range(max_frame): |
|
ret, img = video.read() |
|
if img is None: |
|
break |
|
else: |
|
if i < skip_frames: |
|
continue |
|
video_frame_buffer.append(img) |
|
|
|
|
|
if i==skip_frames: |
|
output_1st_img, pose_1st_img = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True) |
|
body_1st_img = pose_1st_img['bodies']['candidate'] |
|
hands_1st_img = pose_1st_img['hands'] |
|
faces_1st_img = pose_1st_img['faces'] |
|
|
|
''' |
|
计算逻辑: |
|
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。 |
|
2. 用点在图中的实际坐标来计算。 |
|
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H] |
|
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H |
|
注意:dwpose 输出是 (w, h) |
|
''' |
|
|
|
|
|
ref_H, ref_W = refer_img.shape[0], refer_img.shape[1] |
|
ref_ratio = ref_W / ref_H |
|
body_ref_img[:, 0] = body_ref_img[:, 0] * ref_ratio |
|
hands_ref_img[:, :, 0] = hands_ref_img[:, :, 0] * ref_ratio |
|
faces_ref_img[:, :, 0] = faces_ref_img[:, :, 0] * ref_ratio |
|
|
|
video_ratio = width / height |
|
body_1st_img[:, 0] = body_1st_img[:, 0] * video_ratio |
|
hands_1st_img[:, :, 0] = hands_1st_img[:, :, 0] * video_ratio |
|
faces_1st_img[:, :, 0] = faces_1st_img[:, :, 0] * video_ratio |
|
|
|
|
|
align_args = dict() |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[0]-body_1st_img[1]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[0]-body_ref_img[1]) |
|
align_args["scale_neck"] = dist_ref_img / dist_1st_img |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[16]-body_1st_img[17]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[16]-body_ref_img[17]) |
|
align_args["scale_face"] = dist_ref_img / dist_1st_img |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[5]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[5]) |
|
align_args["scale_shoulder"] = dist_ref_img / dist_1st_img |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[2]-body_1st_img[3]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[2]-body_ref_img[3]) |
|
s1 = dist_ref_img / dist_1st_img |
|
dist_1st_img = np.linalg.norm(body_1st_img[5]-body_1st_img[6]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[5]-body_ref_img[6]) |
|
s2 = dist_ref_img / dist_1st_img |
|
align_args["scale_arm_upper"] = (s1+s2)/2 |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[3]-body_1st_img[4]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[3]-body_ref_img[4]) |
|
s1 = dist_ref_img / dist_1st_img |
|
dist_1st_img = np.linalg.norm(body_1st_img[6]-body_1st_img[7]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[6]-body_ref_img[7]) |
|
s2 = dist_ref_img / dist_1st_img |
|
align_args["scale_arm_lower"] = (s1+s2)/2 |
|
|
|
|
|
dist_1st_img = np.zeros(10) |
|
dist_ref_img = np.zeros(10) |
|
|
|
dist_1st_img[0] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,1]) |
|
dist_1st_img[1] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,5]) |
|
dist_1st_img[2] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,9]) |
|
dist_1st_img[3] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,13]) |
|
dist_1st_img[4] = np.linalg.norm(hands_1st_img[0,0]-hands_1st_img[0,17]) |
|
dist_1st_img[5] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,1]) |
|
dist_1st_img[6] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,5]) |
|
dist_1st_img[7] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,9]) |
|
dist_1st_img[8] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,13]) |
|
dist_1st_img[9] = np.linalg.norm(hands_1st_img[1,0]-hands_1st_img[1,17]) |
|
|
|
dist_ref_img[0] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,1]) |
|
dist_ref_img[1] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,5]) |
|
dist_ref_img[2] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,9]) |
|
dist_ref_img[3] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,13]) |
|
dist_ref_img[4] = np.linalg.norm(hands_ref_img[0,0]-hands_ref_img[0,17]) |
|
dist_ref_img[5] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,1]) |
|
dist_ref_img[6] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,5]) |
|
dist_ref_img[7] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,9]) |
|
dist_ref_img[8] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,13]) |
|
dist_ref_img[9] = np.linalg.norm(hands_ref_img[1,0]-hands_ref_img[1,17]) |
|
|
|
ratio = 0 |
|
count = 0 |
|
for i in range (10): |
|
if dist_1st_img[i] != 0: |
|
ratio = ratio + dist_ref_img[i]/dist_1st_img[i] |
|
count = count + 1 |
|
if count!=0: |
|
align_args["scale_hand"] = (ratio/count+align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/3 |
|
else: |
|
align_args["scale_hand"] = (align_args["scale_arm_upper"]+align_args["scale_arm_lower"])/2 |
|
|
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[1] - (body_1st_img[8] + body_1st_img[11])/2 ) |
|
dist_ref_img = np.linalg.norm(body_ref_img[1] - (body_ref_img[8] + body_ref_img[11])/2 ) |
|
align_args["scale_body_len"]=dist_ref_img / dist_1st_img |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[8]-body_1st_img[9]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[8]-body_ref_img[9]) |
|
s1 = dist_ref_img / dist_1st_img |
|
dist_1st_img = np.linalg.norm(body_1st_img[11]-body_1st_img[12]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[11]-body_ref_img[12]) |
|
s2 = dist_ref_img / dist_1st_img |
|
align_args["scale_leg_upper"] = (s1+s2)/2 |
|
|
|
dist_1st_img = np.linalg.norm(body_1st_img[9]-body_1st_img[10]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[9]-body_ref_img[10]) |
|
s1 = dist_ref_img / dist_1st_img |
|
dist_1st_img = np.linalg.norm(body_1st_img[12]-body_1st_img[13]) |
|
dist_ref_img = np.linalg.norm(body_ref_img[12]-body_ref_img[13]) |
|
s2 = dist_ref_img / dist_1st_img |
|
align_args["scale_leg_lower"] = (s1+s2)/2 |
|
|
|
|
|
|
|
|
|
for k,v in align_args.items(): |
|
if np.isnan(v): |
|
align_args[k]=1 |
|
|
|
|
|
offset = body_ref_img[1] - body_1st_img[1] |
|
|
|
|
|
|
|
pose_img, pose_ori = detector(img, detect_resolution, image_resolution, output_type='cv2', return_pose_dict=True) |
|
video_pose_buffer.append(pose_img) |
|
pose_align = self.align_img(img, pose_ori, align_args, detect_resolution, image_resolution) |
|
|
|
|
|
|
|
pose = pose_align |
|
pose['bodies']['candidate'] = pose['bodies']['candidate'] + offset |
|
pose['hands'] = pose['hands'] + offset |
|
pose['faces'] = pose['faces'] + offset |
|
|
|
|
|
|
|
pose['bodies']['candidate'][:, 0] = pose['bodies']['candidate'][:, 0] / ref_ratio |
|
pose['hands'][:, :, 0] = pose['hands'][:, :, 0] / ref_ratio |
|
pose['faces'][:, :, 0] = pose['faces'][:, :, 0] / ref_ratio |
|
pose_list.append(pose) |
|
|
|
|
|
body_list = [pose['bodies']['candidate'][:18] for pose in pose_list] |
|
body_list_subset = [pose['bodies']['subset'][:1] for pose in pose_list] |
|
hands_list = [pose['hands'][:2] for pose in pose_list] |
|
faces_list = [pose['faces'][:1] for pose in pose_list] |
|
|
|
body_seq = np.stack(body_list , axis=0) |
|
body_seq_subset = np.stack(body_list_subset, axis=0) |
|
hands_seq = np.stack(hands_list , axis=0) |
|
faces_seq = np.stack(faces_list , axis=0) |
|
|
|
|
|
|
|
H = 768 |
|
W1 = int((H/ref_H * ref_W)//2 *2) |
|
W2 = int((H/height * width)//2 *2) |
|
result_demo = [] |
|
result_pose_only = [] |
|
for i in range(len(body_seq)): |
|
pose_t={} |
|
pose_t["bodies"]={} |
|
pose_t["bodies"]["candidate"]=body_seq[i] |
|
pose_t["bodies"]["subset"]=body_seq_subset[i] |
|
pose_t["hands"]=hands_seq[i] |
|
pose_t["faces"]=faces_seq[i] |
|
|
|
ref_img = cv2.cvtColor(refer_img, cv2.COLOR_RGB2BGR) |
|
ref_img = cv2.resize(ref_img, (W1, H)) |
|
ref_pose= cv2.resize(output_refer, (W1, H)) |
|
|
|
output_transformed = draw_pose( |
|
pose_t, |
|
int(H_in*1024/W_in), |
|
1024, |
|
draw_face=False, |
|
) |
|
output_transformed = cv2.cvtColor(output_transformed, cv2.COLOR_BGR2RGB) |
|
output_transformed = cv2.resize(output_transformed, (W1, H)) |
|
|
|
video_frame = cv2.resize(video_frame_buffer[i], (W2, H)) |
|
video_pose = cv2.resize(video_pose_buffer[i], (W2, H)) |
|
|
|
res = np.concatenate([ref_img, ref_pose, output_transformed, video_frame, video_pose], axis=1) |
|
result_demo.append(res) |
|
result_pose_only.append(output_transformed) |
|
|
|
print(f"pose_list len: {len(pose_list)}") |
|
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_demo, fps=fps) |
|
clip.write_videofile(outfn, fps=fps) |
|
clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(result_pose_only, fps=fps) |
|
clip.write_videofile(outfn_align_pose_video, fps=fps) |
|
print('pose align done') |
|
self.release_vram() |
|
return outfn_align_pose_video, outfn |
|
|
|
def download_models(self): |
|
repo_id = 'jhj0517/MusePose' |
|
for name, file_path in self.model_paths.items(): |
|
local_dir, filename = os.path.dirname(file_path), os.path.basename(file_path) |
|
if not os.path.exists(local_dir): |
|
os.makedirs(local_dir) |
|
|
|
remote_filepath = os.path.join("dwpose", filename) |
|
if not os.path.exists(file_path): |
|
hf_hub_download(repo_id=repo_id, filename=remote_filepath, |
|
local_dir=local_dir, |
|
local_dir_use_symlinks=False) |
|
|
|
def release_vram(self): |
|
if self.detector is not None: |
|
del self.detector |
|
self.detector = None |
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
gc.collect() |
|
|
|
@staticmethod |
|
def align_img(img, pose_ori, scales, detect_resolution, image_resolution): |
|
|
|
body_pose = copy.deepcopy(pose_ori['bodies']['candidate']) |
|
hands = copy.deepcopy(pose_ori['hands']) |
|
faces = copy.deepcopy(pose_ori['faces']) |
|
|
|
''' |
|
计算逻辑: |
|
0. 该函数内进行绝对变换,始终保持人体中心点 body_pose[1] 不变 |
|
1. 先把 ref 和 pose 的高 resize 到一样,且都保持原来的长宽比。 |
|
2. 用点在图中的实际坐标来计算。 |
|
3. 实际计算中,把h的坐标归一化到 [0, 1], w为[0, W/H] |
|
4. 由于 dwpose 的输出本来就是归一化的坐标,所以h不需要变,w要乘W/H |
|
注意:dwpose 输出是 (w, h) |
|
''' |
|
|
|
|
|
H_in, W_in, C_in = img.shape |
|
video_ratio = W_in / H_in |
|
body_pose[:, 0] = body_pose[:, 0] * video_ratio |
|
hands[:, :, 0] = hands[:, :, 0] * video_ratio |
|
faces[:, :, 0] = faces[:, :, 0] * video_ratio |
|
|
|
|
|
scale_neck = scales["scale_neck"] |
|
scale_face = scales["scale_face"] |
|
scale_shoulder = scales["scale_shoulder"] |
|
scale_arm_upper = scales["scale_arm_upper"] |
|
scale_arm_lower = scales["scale_arm_lower"] |
|
scale_hand = scales["scale_hand"] |
|
scale_body_len = scales["scale_body_len"] |
|
scale_leg_upper = scales["scale_leg_upper"] |
|
scale_leg_lower = scales["scale_leg_lower"] |
|
|
|
scale_sum = 0 |
|
count = 0 |
|
scale_list = [scale_neck, scale_face, scale_shoulder, scale_arm_upper, scale_arm_lower, scale_hand, |
|
scale_body_len, scale_leg_upper, scale_leg_lower] |
|
for i in range(len(scale_list)): |
|
if not np.isinf(scale_list[i]): |
|
scale_sum = scale_sum + scale_list[i] |
|
count = count + 1 |
|
for i in range(len(scale_list)): |
|
if np.isinf(scale_list[i]): |
|
scale_list[i] = scale_sum / count |
|
|
|
|
|
offset = dict() |
|
offset["14_15_16_17_to_0"] = body_pose[[14, 15, 16, 17], :] - body_pose[[0], :] |
|
offset["3_to_2"] = body_pose[[3], :] - body_pose[[2], :] |
|
offset["4_to_3"] = body_pose[[4], :] - body_pose[[3], :] |
|
offset["6_to_5"] = body_pose[[6], :] - body_pose[[5], :] |
|
offset["7_to_6"] = body_pose[[7], :] - body_pose[[6], :] |
|
offset["9_to_8"] = body_pose[[9], :] - body_pose[[8], :] |
|
offset["10_to_9"] = body_pose[[10], :] - body_pose[[9], :] |
|
offset["12_to_11"] = body_pose[[12], :] - body_pose[[11], :] |
|
offset["13_to_12"] = body_pose[[13], :] - body_pose[[12], :] |
|
offset["hand_left_to_4"] = hands[1, :, :] - body_pose[[4], :] |
|
offset["hand_right_to_7"] = hands[0, :, :] - body_pose[[7], :] |
|
|
|
|
|
c_ = body_pose[1] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_neck) |
|
|
|
neck = body_pose[[0], :] |
|
neck = warpAffine_kps(neck, M) |
|
body_pose[[0], :] = neck |
|
|
|
|
|
c_ = body_pose[0] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_face) |
|
|
|
body_pose_up_shoulder = offset["14_15_16_17_to_0"] + body_pose[[0], :] |
|
body_pose_up_shoulder = warpAffine_kps(body_pose_up_shoulder, M) |
|
body_pose[[14, 15, 16, 17], :] = body_pose_up_shoulder |
|
|
|
|
|
c_ = body_pose[1] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_shoulder) |
|
|
|
body_pose_shoulder = body_pose[[2, 5], :] |
|
body_pose_shoulder = warpAffine_kps(body_pose_shoulder, M) |
|
body_pose[[2, 5], :] = body_pose_shoulder |
|
|
|
|
|
c_ = body_pose[2] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper) |
|
|
|
elbow = offset["3_to_2"] + body_pose[[2], :] |
|
elbow = warpAffine_kps(elbow, M) |
|
body_pose[[3], :] = elbow |
|
|
|
|
|
c_ = body_pose[3] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower) |
|
|
|
wrist = offset["4_to_3"] + body_pose[[3], :] |
|
wrist = warpAffine_kps(wrist, M) |
|
body_pose[[4], :] = wrist |
|
|
|
|
|
c_ = body_pose[4] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand) |
|
|
|
hand = offset["hand_left_to_4"] + body_pose[[4], :] |
|
hand = warpAffine_kps(hand, M) |
|
hands[1, :, :] = hand |
|
|
|
|
|
c_ = body_pose[5] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_upper) |
|
|
|
elbow = offset["6_to_5"] + body_pose[[5], :] |
|
elbow = warpAffine_kps(elbow, M) |
|
body_pose[[6], :] = elbow |
|
|
|
|
|
c_ = body_pose[6] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_arm_lower) |
|
|
|
wrist = offset["7_to_6"] + body_pose[[6], :] |
|
wrist = warpAffine_kps(wrist, M) |
|
body_pose[[7], :] = wrist |
|
|
|
|
|
c_ = body_pose[7] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_hand) |
|
|
|
hand = offset["hand_right_to_7"] + body_pose[[7], :] |
|
hand = warpAffine_kps(hand, M) |
|
hands[0, :, :] = hand |
|
|
|
|
|
c_ = body_pose[1] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_body_len) |
|
|
|
body_len = body_pose[[8, 11], :] |
|
body_len = warpAffine_kps(body_len, M) |
|
body_pose[[8, 11], :] = body_len |
|
|
|
|
|
c_ = body_pose[8] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper) |
|
|
|
knee = offset["9_to_8"] + body_pose[[8], :] |
|
knee = warpAffine_kps(knee, M) |
|
body_pose[[9], :] = knee |
|
|
|
|
|
c_ = body_pose[9] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower) |
|
|
|
ankle = offset["10_to_9"] + body_pose[[9], :] |
|
ankle = warpAffine_kps(ankle, M) |
|
body_pose[[10], :] = ankle |
|
|
|
|
|
c_ = body_pose[11] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_upper) |
|
|
|
knee = offset["12_to_11"] + body_pose[[11], :] |
|
knee = warpAffine_kps(knee, M) |
|
body_pose[[12], :] = knee |
|
|
|
|
|
c_ = body_pose[12] |
|
cx = c_[0] |
|
cy = c_[1] |
|
M = cv2.getRotationMatrix2D((cx, cy), 0, scale_leg_lower) |
|
|
|
ankle = offset["13_to_12"] + body_pose[[12], :] |
|
ankle = warpAffine_kps(ankle, M) |
|
body_pose[[13], :] = ankle |
|
|
|
|
|
body_pose_none = pose_ori['bodies']['candidate'] == -1. |
|
hands_none = pose_ori['hands'] == -1. |
|
faces_none = pose_ori['faces'] == -1. |
|
|
|
body_pose[body_pose_none] = -1. |
|
hands[hands_none] = -1. |
|
nan = float('nan') |
|
if len(hands[np.isnan(hands)]) > 0: |
|
print('nan') |
|
faces[faces_none] = -1. |
|
|
|
|
|
body_pose = np.nan_to_num(body_pose, nan=-1.) |
|
hands = np.nan_to_num(hands, nan=-1.) |
|
faces = np.nan_to_num(faces, nan=-1.) |
|
|
|
|
|
pose_align = copy.deepcopy(pose_ori) |
|
pose_align['bodies']['candidate'] = body_pose |
|
pose_align['hands'] = hands |
|
pose_align['faces'] = faces |
|
|
|
return pose_align |
|
|