|
import inspect |
|
from dataclasses import dataclass |
|
from typing import Callable, List, Optional, Union |
|
|
|
import numpy as np |
|
import torch |
|
from diffusers import DiffusionPipeline |
|
from diffusers.image_processor import VaeImageProcessor |
|
from diffusers.schedulers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
) |
|
from diffusers.utils import BaseOutput, is_accelerate_available |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from einops import rearrange |
|
from tqdm import tqdm |
|
from transformers import CLIPImageProcessor |
|
|
|
from musepose.models.mutual_self_attention import ReferenceAttentionControl |
|
|
|
|
|
@dataclass |
|
class Pose2ImagePipelineOutput(BaseOutput): |
|
images: Union[torch.Tensor, np.ndarray] |
|
|
|
|
|
class Pose2ImagePipeline(DiffusionPipeline): |
|
_optional_components = [] |
|
|
|
def __init__( |
|
self, |
|
vae, |
|
image_encoder, |
|
reference_unet, |
|
denoising_unet, |
|
pose_guider, |
|
scheduler: Union[ |
|
DDIMScheduler, |
|
PNDMScheduler, |
|
LMSDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
DPMSolverMultistepScheduler, |
|
], |
|
): |
|
super().__init__() |
|
|
|
self.register_modules( |
|
vae=vae, |
|
image_encoder=image_encoder, |
|
reference_unet=reference_unet, |
|
denoising_unet=denoising_unet, |
|
pose_guider=pose_guider, |
|
scheduler=scheduler, |
|
) |
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.clip_image_processor = CLIPImageProcessor() |
|
self.ref_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True |
|
) |
|
self.cond_image_processor = VaeImageProcessor( |
|
vae_scale_factor=self.vae_scale_factor, |
|
do_convert_rgb=True, |
|
do_normalize=False, |
|
) |
|
|
|
def enable_vae_slicing(self): |
|
self.vae.enable_slicing() |
|
|
|
def disable_vae_slicing(self): |
|
self.vae.disable_slicing() |
|
|
|
def enable_sequential_cpu_offload(self, gpu_id=0): |
|
if is_accelerate_available(): |
|
from accelerate import cpu_offload |
|
else: |
|
raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
|
device = torch.device(f"cuda:{gpu_id}") |
|
|
|
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]: |
|
if cpu_offloaded_model is not None: |
|
cpu_offload(cpu_offloaded_model, device) |
|
|
|
@property |
|
def _execution_device(self): |
|
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"): |
|
return self.device |
|
for module in self.unet.modules(): |
|
if ( |
|
hasattr(module, "_hf_hook") |
|
and hasattr(module._hf_hook, "execution_device") |
|
and module._hf_hook.execution_device is not None |
|
): |
|
return torch.device(module._hf_hook.execution_device) |
|
return self.device |
|
|
|
def decode_latents(self, latents): |
|
video_length = latents.shape[2] |
|
latents = 1 / 0.18215 * latents |
|
latents = rearrange(latents, "b c f h w -> (b f) c h w") |
|
|
|
video = [] |
|
for frame_idx in tqdm(range(latents.shape[0])): |
|
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample) |
|
video = torch.cat(video) |
|
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length) |
|
video = (video / 2 + 0.5).clamp(0, 1) |
|
|
|
video = video.cpu().float().numpy() |
|
return video |
|
|
|
def prepare_extra_step_kwargs(self, generator, eta): |
|
|
|
|
|
|
|
|
|
|
|
accepts_eta = "eta" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
extra_step_kwargs = {} |
|
if accepts_eta: |
|
extra_step_kwargs["eta"] = eta |
|
|
|
|
|
accepts_generator = "generator" in set( |
|
inspect.signature(self.scheduler.step).parameters.keys() |
|
) |
|
if accepts_generator: |
|
extra_step_kwargs["generator"] = generator |
|
return extra_step_kwargs |
|
|
|
def prepare_latents( |
|
self, |
|
batch_size, |
|
num_channels_latents, |
|
width, |
|
height, |
|
dtype, |
|
device, |
|
generator, |
|
latents=None, |
|
): |
|
shape = ( |
|
batch_size, |
|
num_channels_latents, |
|
height // self.vae_scale_factor, |
|
width // self.vae_scale_factor, |
|
) |
|
if isinstance(generator, list) and len(generator) != batch_size: |
|
raise ValueError( |
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" |
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators." |
|
) |
|
|
|
if latents is None: |
|
latents = randn_tensor( |
|
shape, generator=generator, device=device, dtype=dtype |
|
) |
|
else: |
|
latents = latents.to(device) |
|
|
|
|
|
latents = latents * self.scheduler.init_noise_sigma |
|
return latents |
|
|
|
def prepare_condition( |
|
self, |
|
cond_image, |
|
width, |
|
height, |
|
device, |
|
dtype, |
|
do_classififer_free_guidance=False, |
|
): |
|
image = self.cond_image_processor.preprocess( |
|
cond_image, height=height, width=width |
|
).to(dtype=torch.float32) |
|
|
|
image = image.to(device=device, dtype=dtype) |
|
|
|
if do_classififer_free_guidance: |
|
image = torch.cat([image] * 2) |
|
|
|
return image |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
ref_image, |
|
pose_image, |
|
width, |
|
height, |
|
num_inference_steps, |
|
guidance_scale, |
|
num_images_per_prompt=1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
output_type: Optional[str] = "tensor", |
|
return_dict: bool = True, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: Optional[int] = 1, |
|
**kwargs, |
|
): |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
device = self._execution_device |
|
|
|
do_classifier_free_guidance = guidance_scale > 1.0 |
|
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
batch_size = 1 |
|
|
|
|
|
clip_image = self.clip_image_processor.preprocess( |
|
ref_image.resize((224, 224)), return_tensors="pt" |
|
).pixel_values |
|
clip_image_embeds = self.image_encoder( |
|
clip_image.to(device, dtype=self.image_encoder.dtype) |
|
).image_embeds |
|
image_prompt_embeds = clip_image_embeds.unsqueeze(1) |
|
uncond_image_prompt_embeds = torch.zeros_like(image_prompt_embeds) |
|
|
|
if do_classifier_free_guidance: |
|
image_prompt_embeds = torch.cat( |
|
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0 |
|
) |
|
|
|
reference_control_writer = ReferenceAttentionControl( |
|
self.reference_unet, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
mode="write", |
|
batch_size=batch_size, |
|
fusion_blocks="full", |
|
) |
|
reference_control_reader = ReferenceAttentionControl( |
|
self.denoising_unet, |
|
do_classifier_free_guidance=do_classifier_free_guidance, |
|
mode="read", |
|
batch_size=batch_size, |
|
fusion_blocks="full", |
|
) |
|
|
|
num_channels_latents = self.denoising_unet.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
width, |
|
height, |
|
clip_image_embeds.dtype, |
|
device, |
|
generator, |
|
) |
|
latents = latents.unsqueeze(2) |
|
latents_dtype = latents.dtype |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
ref_image_tensor = self.ref_image_processor.preprocess( |
|
ref_image, height=height, width=width |
|
) |
|
ref_image_tensor = ref_image_tensor.to( |
|
dtype=self.vae.dtype, device=self.vae.device |
|
) |
|
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean |
|
ref_image_latents = ref_image_latents * 0.18215 |
|
|
|
|
|
pose_cond_tensor = self.cond_image_processor.preprocess( |
|
pose_image, height=height, width=width |
|
) |
|
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) |
|
pose_cond_tensor = pose_cond_tensor.to( |
|
device=device, dtype=self.pose_guider.dtype |
|
) |
|
pose_fea = self.pose_guider(pose_cond_tensor) |
|
pose_fea = ( |
|
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea |
|
) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
|
|
if i == 0: |
|
self.reference_unet( |
|
ref_image_latents.repeat( |
|
(2 if do_classifier_free_guidance else 1), 1, 1, 1 |
|
), |
|
torch.zeros_like(t), |
|
encoder_hidden_states=image_prompt_embeds, |
|
return_dict=False, |
|
) |
|
|
|
|
|
reference_control_reader.update(reference_control_writer) |
|
|
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input( |
|
latent_model_input, t |
|
) |
|
|
|
noise_pred = self.denoising_unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=image_prompt_embeds, |
|
pose_cond_fea=pose_fea, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * ( |
|
noise_pred_text - noise_pred_uncond |
|
) |
|
|
|
|
|
latents = self.scheduler.step( |
|
noise_pred, t, latents, **extra_step_kwargs, return_dict=False |
|
)[0] |
|
|
|
|
|
if i == len(timesteps) - 1 or ( |
|
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 |
|
): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
reference_control_reader.clear() |
|
reference_control_writer.clear() |
|
|
|
|
|
image = self.decode_latents(latents) |
|
|
|
|
|
if output_type == "tensor": |
|
image = torch.from_numpy(image) |
|
|
|
if not return_dict: |
|
return image |
|
|
|
return Pose2ImagePipelineOutput(images=image) |
|
|